Cho hình vuông ABCD. Điểm E thuộc cạnh BC sao cho ^CDE=30o.Kẽ BH⊥DE(H∈DE), BH cắt CD tại K
a) chứng minh ; BDCH, ABHD nội tiếp, xác định tâm và bán kính
b) AH cắt BD tại M . Chứng minh AB.MD=MA.DH
c) Chứng minh M, E, K thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy \(\widehat{BDC}=45^o\)lại có \(\widehat{CDE}=30^o\)
=>\(\widehat{MAB}=\widehat{MDH}=\widehat{BDC}-\widehat{CDE}=45^o-30^o=15^o\)
( vì cùng chắn cung BH )
=>\(\widehat{BMH}=\widehat{ABM}+\widehat{BAM}=45^o+15^o=60^o\)( Góc ngoài của tam giác AMB )
\(\Delta DEC\)vuông tại C có \(\widehat{CDE}=30^o\left(gt\right)\)
=>\(\widehat{DEC}=60^o\)=> \(\widehat{BEH}=\widehat{DEC}=60^o\left(đđ\right)\)
Tứ giác BMEH có \(\widehat{BEH}=\widehat{BMH}=60^o\)nên BMEH nội tiếp =>\(\widehat{BME}=\widehat{BHE}=90^o\)hay \(ME\perp BD\left(1\right)\)
Mặt khác có E là trực tâm của tam giác DBK=> \(KE\perp BD\left(2\right)\)
Từ (1) và (2) => EM và KE phải trùng nhau hay 3 điểm M. E, K thẳng hàng
a: ΔBAD cân tại B
mà BH là trung tuyến
nên BH vuông góc AD
Xet ΔEAD có
EH vừa là đường cao, vừa là trung tuyến
=>ΔEAD cân tại E
b: EA=ED
mà EA<EM
nên ED<EM
a: ΔBAD cân tại B
mà BH là trung tuyến
nên BH là phân giác của góc ABD
Xét ΔBAE và ΔBDE có
BA=BD
góc ABE=góc DBE
BE chung
=>ΔBAE=ΔBDE
=>EA=ED
b: EA=ED
mà EA<EM
nên ED<EM
a: ΔBAD cân tại B
mà BH là trung tuyến
nên BH là phân giác của góc ABD
Xét ΔBAE và ΔBDE có
BA=BD
góc ABE=góc DBE
BE chung
=>ΔBAE=ΔBDE
=>EA=ED
b: EA=ED
mà EA<EM
nên ED<EM
a: Xét ΔABH và ΔDBH có
BA=BD
BH chung
AH=DH
DO đó: ΔABH=ΔDBH
b: Xét ΔBAE và ΔBDE có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
DO đó:ΔBAE=ΔBDE
Suy ra: \(\widehat{BAE}=\widehat{BDE}=90^0\)
hay DE\(\perp\)BC
c: Xét ΔAEK vuông tại A và ΔDEC vuông tại D có
EA=ED
\(\widehat{AEK}=\widehat{DEC}\)
Do đó: ΔAEK=ΔDEC
Suy ra: AK=DC
Xét ΔBKC có
BA/AK=BD/DC
Do đó: AD//KC
ko làm mà đòi có ăn thì chỉ có ăn cứt và ăn đầu bồi nhá
Tự vẽ hình nhé
Dễ thấy ABHE là tứ giác nội tiếp \(\Rightarrow\widehat{ABD}=\widehat{AHD}=45^o\)
Xét tứ giác MEBH có: \(\widehat{MHE}=\widehat{MBE}=45^o\)=> Tứ giác MEBH là tứ giác nội tiếp \(\Rightarrow\widehat{BME}=90^o\Rightarrow EM\perp BD\)
Tự chứng minh đc E là trực tâm của tam giác BDK => \(KE\perp BD\)
Mà \(EM\perp BD\Rightarrow EM\equiv KE\)=> M,E,K thẳng hàng (đpcm)