K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2020

شءشيلبتال

ءبسس

سللباتةتثعي

يسل

6 tháng 8 2020

A B C M H D

a, Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A , ta có :

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AC^2=BC^2-AB^2\)

\(\Rightarrow AC^2=25^2-20^2\)

\(\Rightarrow AC^2=225\)

\(\Rightarrow AC=15cm\)

Vậy AC = 15cm .

b,Xét tam giác AMC và tam giác HMB có :

          góc MAC = góc MHB = 90độ

          góc AMC = góc HMB ( đối đỉnh )

Do đó : tam giác AMC đồng dạng với tam giác HMB ( g.g )

c,Xét tam giác ADB và tam giác AMC có :

           góc BAD = góc CAM = 90độ

           góc ABD = góc ACM ( vì tam giác AMC đồng dạng với tam giác HMB )

Do đó : tam giác ADB đồng dạng với tam giác AMC ( g.g )

\(\Rightarrow\frac{AC}{AB}=\frac{AM}{AD}\)

\(\Rightarrow AC.AD=AM.AB\)

d, Xét tam giác DBC có BA cắt HC tại M :

 \(CH\perp BD\)

\(BA\perp DC\)

\(\Rightarrow\)M là trực tâm của tam giác DBC

Vậy DM vuông góc với BC .

Học tốt

4 tháng 5 2019

Chọn đáp án B

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Vì tam giác ABC vuông tại A nên tâm đường tròn ngoại tiếp là trung điểm cạnh huyền BC, bán kính là R = BC/2

 

Theo định lý Pytago ta có Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án nên bán kính R = 25/2

30 tháng 9 2021

bài 9
tam giác ABC vuông tại A có
* BC2=AB2+AC2
  BC2=152+202=625
  BC=25cm
* AH.BC=AB.AC
  AH.25=15.20
  AH.25=300
  AH=12cm

30 tháng 9 2021

tam giác ABH vuông tại H có
BH2=AB2-AH2
BH2=152-122=81
BH=9cm
tam giác ABC vuông tại A có
*AB2=BH.BC
225=9.BC
BC=25cm
CH=BC-BH=25-9=16cm
*AC2=BC2-AB2
 AC2=252-152=400
 AC=20cm

25 tháng 5 2019

Xét tam giác ABC vuông tại A có:

Đáp án cần chọn là: A

31 tháng 8 2019

Đáp án D

30 tháng 8 2018

Đáp án D

5 tháng 7 2019

Áp dụng định lý Pytago cho  vuông tại A có:

Đáp án cần chọn là: B

Ta có tam giác ABC vuông tại A => BC2 = AB2 + AC2

=> AC2 = BC2 - AB2 = 252 - 202 = 625 - 400 = 225

=> AC = 15

5 tháng 3 2015

Vì tam giác ABC vuông tại A => BC^2=AB^2+AC^2 ( theo định lí Pi-ta-go)

                                         <=>   AC^2=BC^2-AB^2

                                         <=>  AC^2=625-400

                                        <=>  AC^2=225

                                          <=>  AC=15

NV
25 tháng 7 2021

Áp dụng định lý Pitago:

\(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)

Áp dụng hệ thức lượng:

\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=12\left(cm\right)\)

Do AM là trung tuyến ứng với cạnh huyền

\(\Rightarrow AM=\dfrac{1}{2}BC=\dfrac{25}{2}=12,5\left(cm\right)\)

25 tháng 7 2021

Áp dụng định lí Pytago tam giác ABC vuông tại A

\(BC^2=225+400=625\Rightarrow BC=25\)cm 

Xét tam giác ABC, đường cao AH 

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{300}{25}=12\)cm 

Vì AM là đường trung tuyến suy ra : \(AM=\dfrac{BC}{2}=\dfrac{25}{2}\)cm