K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2021

Ta có

\(1111...11=\frac{10^{2n}-1}{9}\)

\(44444...44=4.\frac{10^n-1}{9}=\frac{4.10^n-4}{9}\)

\(\Rightarrow A=\frac{10^{2n}-1}{9}+\frac{4.10^n-4}{9}+1\)

\(\Rightarrow A=\frac{10^{2n}-1+4.10^n-4+9}{9}=\frac{10^{2n}+4.10^n+4}{9}\)

\(\Rightarrow A=\frac{\left(10^n+2\right)^2}{3^2}=\left(\frac{10^n+2}{3}\right)^2\)

=> A là số chính phương

12 tháng 12 2015

 

a+b+1 = 111..11(2n) +444...44(n) + 1 =111...11(n).10n + 111...11(n) +4.111..11(n) +1

                                                       = 111...11(n).(10n-1)  +6.111..11(n) +1 

                                                      = 333...332(n) +2.333...33(n) +1  = ( 333.....3(n)+1)2   dpcm

9 tháng 3 2015

Đặt 111....1<n chữ số 1> là k
Ta có: 111......1<2n chữ số 1>=k.10^n + k
Vì :10^n = 9k + 1
11......1<2n chữ số 1>= k.<9k + 1> +k = 9k^2+k+k = 9k^2 + 2k
Ta có 444........4<n chữ số 4>=4k
vậy a+b+1= 9k^2 +2k+4k+1 = <3k>^2 +2.3k.1 +1^2 = <3k +1>^2
Vậy a+b+1 là một số chính phương

9 tháng 3 2015

Đặt 111....1<n chữ số 1> là k
Ta có: 111......1<2n chữ số 1>=k.10^n + k
Vì :10^n = 9k + 1
11......1<2n chữ số 1>= k.<9k + 1> +k = 9k^2+k+k = 9k^2 + 2k
Ta có 444........4<n chữ số 4>=4k
vậy a+b+1= 9k^2 +2k+4k+1 = <3k>^2 +2.3k.1 +1^2 = <3k +1>^2
Vậy a+b+1 là một số chính phương

 

31 tháng 7 2018

Thay \(a=444...4;\) \(b=222...2;\) \(c=888...8\) vào biểu thức ta được
\(C=444...4+222...2+888...8+7\)
\(\Leftrightarrow C=4\left(111...1\right)+2\left(111...1\right)+8\left(111...1\right)+7\)
................2n c/s 4.........n+1 c/s 2..........n c/s 8...........
Đặt 111.11(n c/s 1) \(=a\)
\(\Rightarrow\)999...9(n c/s 9) \(\) \(=9a\Rightarrow999...9+1=9a+1\Rightarrow10^n=9a\)
Đặt 111...1(2n c/s 1) \(=111...1000..0+111...1=111...1\times10^n+111...1=a\left(9a+1\right)+a=9a^2+2a\)
Đặt 111...1(n+1 c/s 1)
\(=111...10+1=111...1\times10+1=10a+1\)
\(\Rightarrow C=4\left(9a^2+2a\right)+2\left(10a+1\right)+8a+7=36a^2+36a+9=\left(6a+3\right)^3=\left(666...6+3\right)^2=666...69^2 \)(n-1 c/s 6)
Vậy C là một chính phương

(má ơi làm bài này mệt như j í ><)

31 tháng 7 2018

Mấy bạn giải theo công thức
\(\overline{aaa....aa}=\dfrac{10^n-1}{9}\)
(n c/s a)

17 tháng 3 2021

A=4x111...11 (2n chữ số 1) mà \(111...11=\frac{10^{2n}-1}{9}\Rightarrow A=4.\frac{10^{2n}-1}{9}\) 

Tương tự \(B=8.\frac{10^n-1}{9}\)

\(A+2B=4.\frac{10^{2n}-1}{9}+16.\frac{10^n-1}{9}=\frac{4.10^{2n}-4+16.10^n-16}{9}\)

Đề bài sai thì phải

N
2 tháng 4 2018

Đặt 111....1<n chữ số 1> là k
Ta có: 111......1<2n chữ số 1>=k.10n + k
Vì :10n = 9k + 1
11......1<2n chữ số 1>= k.<9k + 1> +k = 9k2+k+k = 9k2 + 2k
Ta có 444........4<n chữ số 4>=4k
Vậy a+b+1= 9k2 +2k+4k+1 = <3k>2 +2.3k.1 +12 = <3k +1>2
Vậy a+b+1 là một số chính phương

5 tháng 3 2019

\(a+b=1111....11\left(\text{2n chữ số 1}\right)+44.....444\left(\text{n chữ số 4}\right)=111...111\left(\text{n chữ số 1}\right).\left(1000...05\left(\text{n-1 chữ số 0}\right)\right)=333.....33\left(\text{n chữ số 3}\right).3333....35\left(\text{n-1 chữ số 3}\right)=\left(333..334\left(\text{n-1 chữ số 3}\right)\right)^2-1\Rightarrow a+b+1=333...334^2\text{ là số chính phương đpcm}\)

26 tháng 7 2018

=\(\frac{44}{13}\)

7 tháng 10 2016

Ta có:

A + B + 1 = 1111...1 + 4444...4 + 1

                  (2n c/s 1)   (n c/s 4)

= 1111...1000...0 + 1111...1 + 1111...1.4 + 1

 (n c/s 1)(n c/s 0)   (n c/s 1)   (n c/s 1)

= 1111...1.1000...0 + 1111...1 + 1111...1.4 + 1

 (n c/s 1)  (n c/s 0)    (n c/s 1)   (n c/s 1)

= 1111...1.1000...05 + 1

 (n c/s 1)  (n-1 c/s 0)

= 1111...1.3.333...35 + 1

  (n c/s 1)  (n-1 c/s 3)

= 3333...3.333...35 + 1

  (n c/s 3)(n-1 c/s 3)

= 3333...3.333...34 + 3333...3 + 1

(n c/s 3) (n-1 c/s 3)    (n c/s 3)

= 3333...3.333...34 + 3333...34

  (n c/s 3)(n-1 c/s 3)   (n-1 c/s 3)

= 3333...342 là số chính phương (đpcm)

  (n-1 c/s 3)