Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay \(a=444...4;\) \(b=222...2;\) \(c=888...8\) vào biểu thức ta được
\(C=444...4+222...2+888...8+7\)
\(\Leftrightarrow C=4\left(111...1\right)+2\left(111...1\right)+8\left(111...1\right)+7\)
................2n c/s 4.........n+1 c/s 2..........n c/s 8...........
Đặt 111.11(n c/s 1) \(=a\)
\(\Rightarrow\)999...9(n c/s 9) \(\) \(=9a\Rightarrow999...9+1=9a+1\Rightarrow10^n=9a\)
Đặt 111...1(2n c/s 1) \(=111...1000..0+111...1=111...1\times10^n+111...1=a\left(9a+1\right)+a=9a^2+2a\)
Đặt 111...1(n+1 c/s 1)
\(=111...10+1=111...1\times10+1=10a+1\)
\(\Rightarrow C=4\left(9a^2+2a\right)+2\left(10a+1\right)+8a+7=36a^2+36a+9=\left(6a+3\right)^3=\left(666...6+3\right)^2=666...69^2
\)(n-1 c/s 6)
Vậy C là một chính phương
(má ơi làm bài này mệt như j í ><)
\(A=444....444=4.111.....111=4.\frac{10^{2n}-1}{9}\)
\(B=888.....888=8.111.....111=8.\frac{10^n-1}{9}\)
\(\Rightarrow A+2B+4=\frac{4.10^{2n}-4+16.10^n-16+36}{9}=\frac{4.10^{2n}+16.10^n+16}{9}=\left(\frac{2.10^n+4}{3}\right)^2\)
là số hính phương (đpcm)
2) Ta có :
\(x^4+6x^2+25=x^4+10x^2+25-4x^2=\left(x^2+5\right)^2-\left(2x\right)^2\)
\(=\left(x^2-2x+5\right)\left(x^2+2x+5\right)\)(1)
\(3x^4+4x^2+28x+5=\left(3x^4+6x^3+x^2\right)+\left(-6x^3-12x^2-2x\right)+\left(15x^2+30x+5\right)\)
\(=x^2\left(3x^2+6x+1\right)-2x\left(3x^2+6x+1\right)+5\left(3x^2+6x+1\right)\)
\(=\left(x^2-2x+5\right)\left(3x^2+6x+1\right)\)(2)
Từ (1) ; (2) \(\Rightarrow f\left(x\right)=x^2-2x+5\Rightarrow f\left(2011\right)=2011^2-2.2011+5=4040104\)
A = 111...1000...0 + 111...1 - 222...2
(n cs 1)(n cs 0) (n cs 1) (n cs 2)
\(A=111...1\cdot10^n+111...1-222...2\)
(n cs 1) ( n cs 1 ) ( n cs 2 )
Đặt K = 111...1 ( n cs 1 ) => 9K + 1 = 10^n
=> A = K( 9k + 1 ) + K - 2K
= 9K^2 + K + K - 2K
= 9K^2 = (3K)^2
=> A là một số chính phương
B = 111...1000...0 + 111...1 + 444...4 + 1
(n cs 1)(n cs 0) (n cs 1) (n cs 4)
\(\Rightarrow B=111...1\cdot10^n+111...1+444...4+1\)
( n cs 1 ) ( n cs 1 ) ( n cs 4 )
Đặt K = 111...1 ( n cs 1 ) => 9K + 1 = 10^n
=> B = K( 9K + 1 ) + K + 4K + 1
= 9K^2 + 6K + 1
= ( 3K + 1 ) ^2
=> B là một số chính phương
\(A=444......4\) (\(2n\) chữ số 4) \(=4.1111.....111\) (\(2n\) chữ số 1) \(=4.\dfrac{10^{2n}-1}{9}\)
\(B=222.....22\) (\(n+1\) chữ số 2) \(=2.111....11\) (\(n+1\) chữ số 1) \(=2.\dfrac{10^{n+1}-1}{9}\)
\(C=888....888\) (\(n\) chữ số 8) \(=8.111....1111\) (\(n\) chữ số 1) \(=8.\dfrac{10^n-1}{9}\)
\(\Leftrightarrow A+B+C+7=\dfrac{4,10^{2n}+2.10^{n+1}+8.10^n-14}{9}\)
a+b+1 = 111..11(2n) +444...44(n) + 1 =111...11(n).10n + 111...11(n) +4.111..11(n) +1
= 111...11(n).(10n-1) +6.111..11(n) +1
= 333...332(n) +2.333...33(n) +1 = ( 333.....3(n)+1)2 dpcm
A=4x111...11 (2n chữ số 1) mà \(111...11=\frac{10^{2n}-1}{9}\Rightarrow A=4.\frac{10^{2n}-1}{9}\)
Tương tự \(B=8.\frac{10^n-1}{9}\)
\(A+2B=4.\frac{10^{2n}-1}{9}+16.\frac{10^n-1}{9}=\frac{4.10^{2n}-4+16.10^n-16}{9}\)
Đề bài sai thì phải