So sánh A và B
a ) A = 2018 x 2018 ; B = 2017 x 2019
b) A= 2018 x 2019 ; B = 2017 x 2020
c ) A = 32 x 53 - 31 ; B = 53 x 31 - 32
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(0< \frac{2017}{2018}< 1\) nên \(\frac{2017}{2018}>\frac{2017+2019}{2018+2019}\)(1)
\(0< \frac{2018}{2019}< 1\) nên \(\frac{2018}{2019}>\frac{2018+2018}{2018+2019}\) (2)
Cộng vế theo vế 1 và 2 ta được : \(B=\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017+2018+2018+2019}{2018+2019}=\frac{2017+2018}{2018 +2019}+1=A+1>A\)
Vậy B>A
Ta có :
\(A=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)
Vì :
\(\frac{2017}{2018+2019}< \frac{2017}{2018}\)
\(\frac{2018}{2018+2019}< \frac{2018}{2019}\)
Nên \(\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}\) ( cộng theo vế )
\(\Rightarrow\)\(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
Mình thấy là A<B.
Tách A=2017+2018/2018+2019=2017/2018+2019 + 2018/2018+2019
Ta thấy từng số hạng của A lần lượt nhỏ hơn số hạng của B
=> A<B
A=2015/2018^3. + 2017/2018^4 và B= 2017/2018^3. + 2015/2018^4 so sánh A và B
Mong mọi Ng giải giúp mh
\(A=\frac{2017^{2018+1}}{2017^{2018-3}}\)và \(B=\frac{2017^{2018-1}}{2017^{2018-5}}\)
Có \(A=\frac{2017^{2019}}{2017^{2015}}\)và \(B=\frac{2017^{2017}}{2017^{2013}}\)
Mà\(\frac{2017^{2019}}{2017^{2015}}>\frac{2017^{2018}}{2017^{2015}}\)và\(\frac{2017^{2017}}{2017^{2013}}>\frac{2017^{2017}}{2017^{2015}}\)
Vì \(\frac{2017^{2018}}{2017^{2015}}>\frac{2017^{2017}}{2017^{2015}}\)
Vậy A>B
a/ \(A=2018\cdot2018\)
\(=\left(2019-1\right)\cdot2018=2019\cdot2018-2018\)
\(B=2017\cdot2019\)
\(=\left(2018-1\right)\cdot2019=2018\cdot2019-2019\)
\(\Rightarrow A>B\)
b/
\(A=2018\cdot2019\)
\(=\left(2017+1\right)\cdot2019=2017\cdot2019+2019\)
\(B=2017\cdot2020\)
\(=2017\cdot\left(2019+1\right)=2017\cdot2019+2017\)
\(\Rightarrow A>B\)
Quên câu cuối ạ
c/ \(A=32\cdot53-31\)
\(=32\cdot53-32+1\)
\(B=53\cdot31-32\)
\(=53\cdot\left(32-1\right)-32=32\cdot53-32-53\)
có 1 > (-53)
\(\Rightarrow A>B\)