Cho tam giác ABC, có góc B=2C, độ dài cạnh AB=6,4cm; AC=8cm. Vậy độ dài cạnh BC là ...........
(Hướng dẫn giúp em với em đang cần gấp, cám ơn mọi người nhiều ạ!)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đường cao AH.
Ta có : góc B=2 góc C
Mà góc B =góc HAC(cùng phụ với góc BAH)
=>góc HAC=2góc C
Vì góc HAC+góc C=90 độ (tam giác AHC vuông tại H)
=>2 góc C+góc C=90 độ
=>3 góc C=90 độ
=>góc C=30 độ
=>góc HAC=60 độ
Mà tam giác AHC vuông tại H nên: AHC là nữa tam giác đều
=>AH=AC/2=8/2=4 cm
Áp dụng định lí py-ta-go lần lượt vào 2 tam giác vuông: tam giác ABH và tam giác AHC
(bạn tự tính tìm ra BH và HC)
Tính ra: BH=\(\frac{4\sqrt{39}}{5}\)cm;HC=\(4\sqrt{3}\)cm
=>BC=BH+HC=\(\frac{4\sqrt{39}+20\sqrt{3}}{5}\)cm
75% = 3/4
Tổng độ dài AB và AC là: 3 + 4 = 7 (phần)
Giá trị 1 phần: 120 : ( 3 + 4 + 5) = 10 (cm)
Cạnh AC: 10 x 3 = 30 (cm)
Cạnh AB: 10 x 4 = 40 (cm)
Cạnh BC: 10 x 5 = 50 ( cm)
DT tam giác ABC:( 30 x 40): 2= 60 (cm2)
Chiều cao tương ứng của cạnh BC: 60 x 2 : 50 = 24
Học Tốt ^-^
Kẻ đường cao BH (H thuộc AC)
Do góc A nhọn \(\Rightarrow\) H nằm giữa A và C
Ta có: \(S_{ABC}=\dfrac{1}{2}BH.AC\Leftrightarrow\dfrac{2}{5}bc=\dfrac{1}{2}BH.b\)
\(\Rightarrow BH=\dfrac{4c}{5}\)
Áp dụng Pitago cho tam giác vuông ABH:
\(AH^2=AB^2-BH^2=c^2-\left(\dfrac{4c}{5}\right)^2=\dfrac{9c^2}{25}\Rightarrow AH=\dfrac{3c}{5}\)
\(\Rightarrow CH=AC-AH=b-\dfrac{3c}{5}\)
Pitago tam giác vuông BCH:
\(BC=\sqrt{BH^2+CH^2}=\sqrt{\left(\dfrac{4c}{5}\right)^2+\left(b-\dfrac{3c}{5}\right)^2}=\sqrt{b^2-\dfrac{6}{5}bc+c^2}\)
gọi độ dài cạnh góc vuông thứ hai là x (m) ( x>0 )
độ dài cạnh huyền lớn hơn độ dài cạnh góc vuông thứ hai là 2 m
=> độ dài cạnh huyền : x+2 (m)
theo định lý Py-ta-go ta có phương trình:
62 +x2= ( x+2)2
<=> 36 + x2= x2+4x+4
<=> 36+x2- x2-4x -4=0
<=> 32-4x=0
<=> 4x=32
<=> x=8 (TM)
vậy độ dài cạnh góc vuông thứ hai của tam giác đó là 8m