\(\frac{4x}{5}=\frac{3y}{2};\frac{4y}{5}=\frac{5z}{3}và2x-3y+4z=5.34\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}\frac{4x}{5}=\frac{3y}{2}\\\frac{4y}{5}=\frac{5z}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{5}{4}}=\frac{y}{\frac{2}{3}}\\\frac{y}{\frac{5}{4}}=\frac{z}{\frac{3}{5}}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{5}{4}}\times\frac{1}{\frac{3}{2}}=\frac{y}{\frac{2}{3}}\times\frac{1}{\frac{3}{2}}\\\frac{y}{\frac{5}{4}}\times\frac{1}{\frac{4}{5}}=\frac{z}{\frac{3}{5}}\times\frac{1}{\frac{4}{5}}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{15}{8}}=\frac{y}{1}\\\frac{y}{1}=\frac{z}{\frac{12}{25}}\end{cases}}\Rightarrow\frac{x}{\frac{15}{8}}=\frac{y}{1}=\frac{z}{\frac{12}{25}}\)
2x - 3y + 4z = 5, 34
=> \(\frac{2x}{\frac{15}{4}}=\frac{3y}{3}=\frac{4z}{\frac{48}{25}}\)và 2x - 3y + 4z = 5, 34
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{\frac{15}{4}}=\frac{3y}{3}=\frac{4z}{\frac{48}{25}}=\frac{2x-3y+4z}{\frac{15}{4}-3+\frac{48}{25}}=\frac{5,34}{\frac{267}{100}}=2\)
\(\Rightarrow\hept{\begin{cases}x=2\cdot\frac{15}{8}=\frac{15}{4}\\y=2\cdot1=2\\z=2\cdot\frac{12}{25}=\frac{24}{25}\end{cases}}\)
Vậy ...
b) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và 2x + 3y - z = 50
=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)
=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)và 2x + 3y - z = 50
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(...=\frac{2x-2+3y-6-\left(z-3\right)}{4+9-4}=\frac{2x-2+3y-6-z+3}{9}=\frac{50-2-6+3}{9}=\frac{45}{9}=5\)
\(\frac{x-1}{2}=5\Rightarrow x-1=10\Rightarrow x=11\)
\(\frac{y-2}{3}=5\Rightarrow y-2=15\Rightarrow y=17\)
\(\frac{z-3}{4}=5\Rightarrow z-3=20\Rightarrow z=23\)
Vậy ...
\(\frac{4xy-5}{10x^3y}-\frac{6y^2-5}{10x^3y}=\frac{\left(4xy-5\right)-\left(6y^2-5\right)}{10x^3y}=\frac{4xy-6y^2}{10x^3y}=\frac{2y\left(2x-3y\right)}{2y.5x^3}=\frac{2x-3y}{5x^3}\)
\(\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10x-5}\)
\(=\frac{\left(2x+1\right)^2-\left(2x-1\right)^2}{\left(2x+1\right)\left(2x-1\right)}:\frac{4x}{10x-5}\)
\(=\frac{\left(2x+1+2x-1\right)\left(2x+1-2x+1\right)}{\left(2x+1\right)\left(2x-1\right)}\times\frac{10x-5}{4x}\)
\(=\frac{4x.2}{\left(2x+1\right)\left(2x-1\right)}\times\frac{5\left(2x-1\right)}{4x}\)
\(=\frac{10}{2x+1}\)
\(a,\frac{4xy-5}{10x^3y}-\frac{6y^2-5}{10x^3y}=\frac{\left(4xy-5\right)-\left(6y^2-5\right)}{10x^3y}=\frac{4xy-5-6y^2+5}{10x^3y}=\frac{4xy-6y^2}{10x^3y}\)
\(b,\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10x-5}\)
\(=\left(\frac{2x+1}{2x-1}+\frac{2x-1}{2x-1}\right):\frac{4x}{10x-5}\)
\(=\frac{2x+1+2x-1}{2x-1}:\frac{4x}{10x-5}\)
\(=\frac{4x}{2x-1}.\frac{10x-5}{4x}\)
\(=\frac{10x-5}{2x-1}\)
\(=\frac{5\left(2x-1\right)}{2x-1}\)
\(=\frac{5}{1}=5\)
\(=\dfrac{2x+y}{2\left(x+y\right)}-\dfrac{x+2y}{x-y}+\dfrac{5}{x}-\dfrac{4x}{3\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{2x^2-2xy+xy-y^2}{2\left(x+y\right)\left(x-y\right)}-\dfrac{2\left(x+2y\right)\left(x-y\right)}{2\left(x-y\right)\left(x+y\right)}+\dfrac{5}{x}-\dfrac{4x}{3\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{2x^2-xy-y^2-2\left(x^2+xy-2y^2\right)}{2\left(x-y\right)\left(x+y\right)}-\dfrac{4x}{3\left(x-y\right)\left(x+y\right)}+\dfrac{5}{x}\)
\(=\dfrac{2x^2-xy-y^2-2x^2-2xy+4y^2}{2\left(x-y\right)\left(x+y\right)}-\dfrac{4x}{3\left(x-y\right)\left(x+y\right)}+\dfrac{5}{x}\)
\(=\dfrac{-3xy+3y^2}{2\left(x-y\right)\left(x+y\right)}-\dfrac{4x}{3\left(x-y\right)\left(x+y\right)}+\dfrac{5}{x}\)
\(=\dfrac{-9xy+9y^2-8x}{6\left(x-y\right)\left(x+y\right)}+\dfrac{5}{x}\)
\(=\dfrac{-9x^2y+9xy^2-8x^2+30\left(x^2-y^2\right)}{6x\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{-9x^2y+9xy^2+22x^2-30y^2}{6x\cdot\left(x-y\right)\left(x+y\right)}\)
a) \(\frac{6}{x^2+4x}+\frac{3}{2x+8}\left(ĐK:x\ne0;x\ne-4\right)\)
\(=\frac{6}{x\left(x+4\right)}+\frac{3}{2\left(x+4\right)}=\frac{12+3x}{2x\left(x+4\right)}=\frac{3\left(4+x\right)}{2x\left(x+4\right)}=\frac{3}{2x}\)
b) \(\frac{4xy-5}{140x^3y}-\frac{6y^2-5}{10x^3y}\left(ĐK:x,y\ne0\right)\)
\(=\frac{4xy-5-6y^2+5}{10x^3y}=\frac{2y\left(2x-3y\right)}{10x^3y}=\frac{2x-3y}{5x^3}\)
\(\frac{x}{\frac{25}{16}}=\frac{y}{\frac{5}{6}}=\frac{z}{\frac{2}{5}}=\frac{2x-3y+4z}{\frac{2.25}{16}-\frac{3.5}{6}+\frac{4.2}{5}}=\frac{5,34}{\frac{89}{40}}=240\)
\(x=\frac{25}{16}.\frac{12}{5}=\frac{15}{4}\)
\(y=\frac{5}{6}.\frac{12}{5}=2\)
\(z=\frac{2}{5}.\frac{12}{5}=\frac{24}{25}\)