Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{\sqrt{\left(2x+1\right)\left(y+2\right)}}\le\frac{2}{2x+y+3}=\frac{2}{x+y+x+1+2}\le\frac{2}{2\sqrt{xy}+2\sqrt{x}+2}=\frac{1}{\sqrt{xy}+\sqrt{x}+1}\)
Tương tự và cộng lại:
\(A\le\frac{1}{\sqrt{xy}+\sqrt{x}+1}+\frac{1}{\sqrt{yz}+\sqrt{y}+1}+\frac{1}{\sqrt{zx}+\sqrt{z}+1}=\frac{1}{\sqrt{xy}+\sqrt{x}+1}+\frac{\sqrt{x}}{1+\sqrt{xy}+\sqrt{x}}+\frac{\sqrt{xyz}}{\sqrt{zx}+\sqrt{z}+\sqrt{xyz}}=1\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Vì xyz=1\(\Rightarrow x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x\sqrt{x}\)
Tương tự \(y^2\left(z+x\right)\ge2y\sqrt{y};z^2=\left(x+y\right)\ge2z\sqrt{z}\)
\(\Rightarrow P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)
Đặt \(x\sqrt{x}+2y\sqrt{y}=a;y\sqrt{y}+2z\sqrt{z}=b;z\sqrt{z}+2x\sqrt{x}=c\)
\(\Rightarrow x\sqrt{x}=\frac{4c+a-2b}{9};y\sqrt{y}=\frac{4a+b-2c}{9};z\sqrt{z}=\frac{4b+c-2a}{9}\)
\(\Rightarrow P\ge\frac{2}{9}\left(\frac{4c+a-2b}{b}+\frac{4a+b-2c}{a}+\frac{4b+c-2a}{b}\right)\)
\(=\frac{2}{9}\text{ }\left[4\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\right]\ge\frac{2}{9}\left(4.3+2-6\right)=2\)
Min P =2 khi và chỉ khi a=b=c khi va chỉ khi x=y=z=1
ĐKXĐ : \(x>\frac{1}{2};y>\frac{1}{2};z>\frac{1}{2}\)
Áp dụng ( a+b)2 \(\ge4ab\)ta có :
( x+ 2y)2 = \(\left(\frac{2x+y}{2}+\frac{3y}{2}\right)^2\ge4.\left(\frac{2x+y}{2}\right).\frac{3y}{2}\)
\(\Rightarrow\left(x+2y\right)^2\ge3y\left(2x+y\right)\)
\(\Rightarrow\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\)
\(\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)
Tương tự : \(\frac{2y+z}{y\left(y+2\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right)\)
\(\frac{2z+x}{z.\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\)
=> \(A\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Ta có : \(\sqrt{\left(2x-1\right)1}\le\frac{2x-1+1}{2}\)
\(\Rightarrow\sqrt{2x-1}\le x\)
\(\Rightarrow\frac{1}{x}\le\frac{1}{\sqrt{2x-1}}\)
\(\frac{1}{y}\le\frac{1}{\sqrt{2y-1}}\)
\(\frac{1}{z}\le\frac{1}{\sqrt{2z-1}}\)
Do đó
A \(\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}\)
Vậy Max A = 3 khi x = y = z = 1
Theo Cô-si ta có:
\(3=\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le3\)
Xét:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\Sigma_{cyc}\frac{2x+y}{x\left(x+2y\right)}=\frac{1}{3}\left[\frac{\left(x-y\right)^2}{xy\left(x+2y\right)}+\frac{\left(y-z\right)^2}{yz\left(y+2z\right)}+\frac{\left(z-x\right)^2}{zx\left(z+2x\right)}\right]\ge0\)
\(\Rightarrow\Sigma_{cyc}\frac{2x+y}{x\left(x+2y\right)}\le3\)
\(ĐKXĐ:x,y,z\ge1\left(x,y,z\inℤ\right)\)
Ta có: \(\left(x+2y\right)^2=\left(\frac{2x+y}{2}+\frac{3y}{2}\right)^2\ge4.\frac{2x+y}{2}.\frac{3y}{2}=3y\left(2x+y\right)\)
\(\Rightarrow\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)
Tương tự: \(\frac{2y+z}{y\left(y+2x\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right)\);\(\frac{2z+x}{z\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\)
\(\Rightarrow A\le\frac{1}{3}.3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)(*)
Ta có: \(\sqrt{2x-1}=\sqrt{\left(2x-1\right).1}\le\frac{2x-1+1}{2}=x\)(BĐT Cô - si)
\(\Rightarrow\frac{1}{x}\le\frac{1}{\sqrt{2x-1}}\)
Tương tự: \(\frac{1}{y}\le\frac{1}{\sqrt{2y-1}}\);\(\frac{1}{z}\le\frac{1}{\sqrt{2z-1}}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\)(**)
Từ (*) và (**) suy ra \(A=\frac{2x+y}{x\left(x+2y\right)}+\frac{2y+z}{y\left(y+2z\right)}+\frac{2z+x}{z\left(z+2x\right)}\le3\)
Đẳng thức xảy ra khi x = y = z = 1
Từ đẳng thức đã cho suy ra \(x>\frac{1}{2};y>\frac{1}{2};z>\frac{1}{2}\)
Áp dụng\(\left(a+b\right)^2\ge4ab\)ta có \(\left(x+2y\right)^2=\left(\frac{2x+y}{2}+\frac{3y}{2}\right)^2\ge4\cdot\frac{2x+y}{2}\cdot\frac{3y}{2}\)
\(\Rightarrow\left(x+2y\right)^2\ge3y\left(2x+y\right)\)(Dấu "=" xảy ra <=> x=y)
=> \(\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)
Tương tự \(\hept{\begin{cases}\frac{2y+z}{y\left(y+2z\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right)\\\frac{2z+x}{z\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\end{cases}}\)
=> \(A\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)(Dấu "=" xảy ra <=> x=y=z)
Ta có \(\sqrt{\left(2x-1\right)\cdot1}\le\frac{\left(2x-1\right)+1}{2}\Rightarrow\sqrt{2x-1}\le x\Rightarrow\frac{1}{x}\le\frac{1}{\sqrt{2x-1}}\)
Tương tự \(\hept{\begin{cases}\frac{1}{y}\le\frac{1}{\sqrt{2y-1}}\\\frac{1}{z}\le\frac{1}{\sqrt{2z-1}}\end{cases}}\)
Do đó \(A\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\)(dấu "=" xảy ra <=> x=y=z=1)
Vậy MaxA=3 đạt được khi x=y=z=1
TA CÓ:
\(B=\frac{1}{\sqrt{x\left(y+2z\right)}}+\frac{1}{\sqrt{y\left(z+2x\right)}}+\frac{1}{\sqrt{z\left(x+2y\right)}}\ge\frac{1}{\frac{x+y+2z}{2}}+\frac{1}{\frac{y+z+2x}{2}}+\frac{1}{\frac{z+x+2y}{2}}\)
\(\ge\frac{\left(1+1+1\right)^2}{\frac{3}{2}\left(x+y+z\right)}=\frac{18}{3\sqrt{3}}=\frac{6}{\sqrt{3}}\)
DẤU BẰNG XẢY RA:\(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
\(\frac{B}{\sqrt{3}}=\frac{1}{\sqrt{3x\left(y+2z\right)}}+\frac{1}{\sqrt{3y\left(z+2x\right)}}+\frac{1}{\sqrt{3z\left(x+2y\right)}}\)
\(\ge\frac{1}{\frac{3x+y+2z}{2}}+\frac{1}{\frac{3y+z+2x}{2}}+\frac{1}{\frac{3z+x+2y}{2}}\ge\frac{2\left(1+1+1\right)^2}{6\left(x+y+z\right)}=\frac{18}{6\sqrt{3}}\)
\(\Rightarrow B\ge\frac{18\sqrt{3}}{6\sqrt{3}}=3\)
Dấu "=" khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Xem lại cái đề đi Tuyển. Hình như giá trị nhỏ nhất của cái biểu thức dưới còn lớn hơn là 1 thì làm sao bài đó có giá trị x, y, z thỏa được mà bảo tính A.
HSG toán 9 Quảng Nam năm 2018-2019
Giải: Từ đẳng thức đã cho suy ra: \(x>\frac{1}{2};y>\frac{1}{2};z>\frac{1}{2}\). Áp dụng (a+b)2 >= 4ab ta có:
\(\left(x+2y\right)^2=\left(\frac{2x+y}{2}+\frac{3y}{2}\right)^2\ge4\cdot\left(\frac{2x+y}{2}\right)\cdot\frac{3y}{2}\)
\(\Rightarrow\left(x+2y\right)^2\ge3y\left(2x+y\right)\). Dấu "=" xảy ra <=> x=y
\(\Rightarrow\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)
Tương tự \(\hept{\begin{cases}\frac{2y+z}{y\left(y+2z\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right)\\\frac{2z+x}{z\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\end{cases}}\)
\(\Rightarrow A\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\left("="\Leftrightarrow x=y=z\right)\)
Ta có \(\sqrt{\left(2x-1\right)\cdot1}\le\frac{\left(2x-1\right)+1}{2}\Rightarrow\sqrt{2x-1}\le2\Rightarrow\frac{1}{x}\le\frac{1}{\sqrt{2x-1}}\)
Tương tự \(\frac{1}{y}\le\frac{1}{\sqrt{2y-1}},\frac{1}{z}\le\frac{1}{\sqrt{2z-1}}\)Do đó:
\(A\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\)
Dấu "=" xảy ra <=> x=y=z=1
Vậy GTLN của A=3 đạt được khi x=y=z=1
Sửa đề cho x,y,z dương thỏa mãn xyz=1 tìm max \(...+\frac{1}{\sqrt{\left(2z+1\right)\left(x+2\right)}}\)
gọi bthuc là A
\(\frac{1}{\sqrt{\left(2x+1\right)\left(y+2\right)}}\le\frac{2}{2x+y+3}=\frac{2}{x+y+x+1+2}\le\frac{2}{2\sqrt{xy}+2\sqrt{x}+2}=\frac{1}{\sqrt{xy}+\sqrt{x}+1}\)
Tương tự,cộng vế theo vế ta dc:
\(A\le\frac{1}{\sqrt{xy}+\sqrt{x}+1}+\frac{1}{\sqrt{yz}+\sqrt{y}+1}+\frac{1}{\sqrt{zx}+\sqrt{z}+1}\)
\(=\frac{1}{\sqrt{xy}+\sqrt{x}+1}+\frac{\sqrt{x}}{1+\sqrt{xy}+\sqrt{x}}+\frac{\sqrt{xy}}{\sqrt{x}+1+\sqrt{xy}}=1\)
Dấu "=" xảy ra <=> x=y=z=1
Do 2 không chia hết cho 3 nên \(2^n\)không chia hết cho 3 ( do \(n\in N\))
\(\Rightarrow2^n\)chia 3 dư 1 hoặc 2
\(\Rightarrow\orbr{\begin{cases}2^n-1⋮3\\2^n+1⋮3\end{cases}}\)
\(\Rightarrow\left(2^n-1\right)\left(2^n+1\right)⋮3\)với mọi \(n\in N\)(đpcm)
2.a,
\(x^2-2x+3=2\sqrt{2x^2-4x+3}\)
Đặt \(\sqrt{x^2-2x+3}=t\left(t\ge\sqrt{2}\right)\)
\(\Rightarrow2x^2-4x+3=2t^2-3\)
\(\Rightarrow\)phương trình trên trở thành:
\(t^2=2\sqrt{2t^2-3}\)
\(\Leftrightarrow t^4=8t^2-12\)
\(\Leftrightarrow t^4-8t^2+12=0\)
\(\Leftrightarrow\left(t^2-6\right)\left(t^2-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t^2-6=0\\t^2-2=0\end{cases}}\)
TH1. \(t^2-6=0\)\(\Rightarrow x^2-2x+3=6\)\(\Leftrightarrow x^2-2x-3=0\)\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow x=3\)hoặc \(x=-1\)
TH2. \(t^2-2=0\) \(\Rightarrow x^2-2x+3=2\)\(\Leftrightarrow\left(x-1\right)^2=0\)\(\Leftrightarrow x=1\)
Vậy pt có tập nghiệm là \(S=\left\{1;3;-1\right\}\)
4.
a,
Xét tam giác ABO có OA=OB=R và AB=\(R\sqrt{2}\)(gt)
mà \(R^2+R^2=\left(R\sqrt{2}\right)^2\)
\(\Rightarrow\)độ dài 3 cạnh của tam giác ABO là một bộ số Pitagoras
\(\Rightarrow\)tam giác ABO vuông cân tại O
\(\Rightarrow\)\(\widehat{OAB}=\widehat{OBA}=45^0\)
Xét tam giác CAP có CA=CP=\(R_1\)\(\Rightarrow\)tam giác CAP cân tại C mà \(\widehat{CAP}=45^0\)
\(\Rightarrow\)tam giác CAP vuông cân tại C
tương tự \(\Rightarrow\)tam giác DBP vuông cân tại D
ta có: CP vuông góc vơi OA(c/m trên) và DB vuông góc với OB(c/m trên)
mà OA vuông góc vơi OB \(\Rightarrow\)\(\widehat{CPD}=90^0\)
\(\widehat{CMD}=\widehat{CMP}+\widehat{DMP}=\widehat{CPM}+\widehat{DPM}=\widehat{CPD}=90^0\)
\(\Rightarrow\)\(M\in\)đường tròn đường kính CD
do tứ giác OCPD là hình chữ nhật ( có 4 góc vuông ) \(\Rightarrow\)\(M,O,C,D,P\)cùng thuộc 1 đường tròn đường kính OP (đpcm)
\(\Rightarrow\)OM vuông góc với MP mà CD vuông góc với MP ( t/c đường nối tâm vuông góc với dây chung tại trung điểm)
\(\Rightarrow OM//CD\)(đpcm)