Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử z = min{x,y,z} \(\Rightarrow4=x+y+z+xyz\ge z^3+3z\Leftrightarrow\left(z-1\right)\left(z^2+z+4\right)\le0\Rightarrow z\le1\)(*)
Chọn t thỏa mãn \(\hept{\begin{cases}x+y+z+xyz=2t+z+t^2z\\2t+z+t^2z=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y-2t=\left(t^2-xy\right)z\left(1\right)\\2t+z+t^2z=4\left(2\right)\end{cases}}\)
Giả sử \(t^2< xy\Rightarrow2t>x+y\ge2\sqrt{xy}\Rightarrow t^2>xy\) (mâu thuẫn với giả sử)
Vậy \(t^2\ge xy\Rightarrow x+y\ge2t\). Đặt P = f(a;b;c). Xét hiệu:
\(f\left(x;y;z\right)-f\left(t;t;z\right)=z\left(x+y-2t\right)-\left(t^2-xy\right)\)
\(=z^2\left(t^2-xy\right)-\left(t^2-xy\right)=\left(z^2-1\right)\left(t^2-xy\right)\le0\)
Vậy: \(P=f\left(x;y;z\right)\le f\left(t;t;z\right)=t^2+2tz\)
Từ \(\left(2\right)\Rightarrow z=\frac{\left(4-2t\right)}{t^2+1}.\text{Do }z\ge0\Rightarrow4-2t\ge0\Rightarrow t\le2\)
Mặc khác do (*): \(\Rightarrow4=2t+z+t^2z\le t^2+2t+1\Rightarrow\left(t+3\right)\left(t-1\right)\ge0\Rightarrow2\ge t\ge1\)
Vậy ta tìm max của: \(f\left(t;t;z\right)=f\left(t;t;\frac{4-2t}{t^2+1}\right)=t^2+\frac{2t\left(4-2t\right)}{t^2+1}\)
Dễ thấy hàm số này đồng biến suy ra \(f\left(t;t;\frac{4-2t}{t^2+1}\right)\) đạt max khi t = 2. Khi đó \(P=f\left(a;b;c\right)\le f\left(t;t;\frac{4-2t}{t^2+1}\right)\le4\)
Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(2;2;0\right)\) và các hoán vị.
P/s: em hết cách rồi nên đành chơi kiểu này:(
Ta chứng minh \(\frac{x^4+y^4}{x^2+y^2}\ge\frac{\frac{\left(x^2+y^2\right)^2}{2}}{x^2+y^2}=\frac{x^2+y^2}{2}\)
Tương tự và cộng lại
\(\Rightarrow VT\ge x^2+y^2+z^2\ge xy+xz+yz=3\)
\(xy+yz+zx=xyz\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\) thì
\(\hept{\begin{cases}a+b+c=1\\P=\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{1}{16}\end{cases}}\)
Ta co:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{64}+\frac{1+c}{64}\ge\frac{3a}{16}\)
\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\frac{3a}{16}-\frac{b}{64}-\frac{c}{64}-\frac{1}{32}\)
Từ đây ta co:
\(P\ge\left(a+b+c\right)\left(\frac{3}{16}-\frac{1}{64}-\frac{1}{64}\right)-\frac{3}{32}=\frac{1}{16}\)