Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e)(3x-1)(2x+7)-(x+1)(6x-5)=16
=>\(6x^2-2x+21x-7-6x^2-6x+5x+5\)=16
=>18x-2=16
=> 18x=18
=> x=1
\(f\left(x\right)=\left(x-1\right).g\left(x\right)\)
\(\Rightarrow3x^3-2x^2+x+5=\left(x-1\right)\left(3x^2+ax+b\right)\)
\(\Rightarrow3x^3-2x^2+x+5=3x^3+ax^2+bx-3x^2-ax-b\)
\(\Rightarrow-2x^2+x+5=x^2\left(a-3\right)+x\left(b-a\right)-b\)
-Bạn kiểm tra lại đề.
c)3(2x-1)-5(x-3)+6(3x-4)=24
<=>6x-3-5x-15+18x-24=24
<=>19x-12=24
<=>19x=36
<=>x=\(\frac{36}{19}\)
d)2x(5-3x)+2x(3x-5)-3(x-7)=3
<=>10x-6x2+6x2-10x-3x-21=3
<=>-3(x-7)=3
<=>21-3x=3
<=>-3x=-18
<=>x=6
a.\(6x^2-\left(2x-3\right)\left(3x+2\right)-1=0\Leftrightarrow6x^2-\left(6x^2-2x-6\right)-1=0\)
\(\Leftrightarrow2x+5=0\Leftrightarrow x=-\frac{5}{2}\)
b. \(\left(x-3\right)\left(x+7\right)-\left(x+5\right)\left(x-1\right)=0\Leftrightarrow x^2+4x-21-\left(x^2+4x-5\right)=0\)
\(\Leftrightarrow-16=0\)
Vậy không có x thỏa mãn.
Bài 2 mk giải luôn nhé
f(x)=x^2+4x-5=x^2-x+5x-5
=x(x-1)+5(x-1)
=(x+5)(x-1)
Vậy x=-5 hoặc x=1 là nghiệm của đa thức f(x)
\(f\left(4\right)+2f\left(\frac{1}{4}\right)=4^2=16\)(1)
\(f\left(\frac{1}{4}\right)+2f\left(\frac{1}{\frac{1}{4}}\right)=\left(\frac{1}{4}\right)^2\)
\(\Rightarrow f\left(\frac{1}{4}\right)+2f\left(4\right)=\frac{1}{16}\Rightarrow2f\left(\frac{1}{4}\right)+4f\left(4\right)=\frac{1}{8}\)(2)
Từ (1) và (2), ta được:
\(2f\left(\frac{1}{4}\right)+4f\left(4\right)-f\left(4\right)-2f\left(\frac{1}{4}\right)=\frac{1}{8}-16\)
\(\Rightarrow3f\left(4\right)=\frac{-127}{8}\Rightarrow f\left(4\right)=\frac{-127}{24}\)
bn xem lại đề chỗ xf(x)
da sua lai thanh:
f(x): f(x) + x+ f(x) = x+1