Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, \(\vec{AC}+\vec{CD}-\vec{EC}\)
\(=\vec{AE}+\vec{EC}+\vec{BD}-\vec{BC}-\vec{EC}\)
\(=\vec{AE}-\vec{DB}+\vec{CB}\)
\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\dfrac{1}{9}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{ab}{2b}\right)\)
\(=\dfrac{1}{9}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{a}{2}\right)\)
Tương tự:
\(\dfrac{bc}{b+3c+2a}\le\dfrac{1}{9}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}+\dfrac{b}{2}\right)\)
\(\dfrac{ac}{c+3a+2b}\le\dfrac{1}{9}\left(\dfrac{ac}{b+c}+\dfrac{ac}{a+b}+\dfrac{c}{2}\right)\)
Cộng vế:
\(P\le\dfrac{1}{9}\left(\dfrac{bc+ac}{a+b}+\dfrac{bc+ab}{a+c}+\dfrac{ab+ac}{b+c}+\dfrac{a+b+c}{2}\right)\)
\(P\le\dfrac{1}{9}.\left(a+b+c+\dfrac{a+b+c}{2}\right)=\dfrac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(VT=\sqrt{\left(a+\dfrac{5b}{2}\right)^2+\dfrac{15b^2}{4}}+\sqrt{\left(b+\dfrac{5c}{2}\right)^2+\dfrac{15c^2}{4}}+\sqrt{\left(c+\dfrac{5a}{2}\right)^2+\dfrac{15a^2}{4}}\)
\(\Rightarrow VT\ge\sqrt{\left(a+\dfrac{5b}{2}+b+\dfrac{5c}{2}+c+\dfrac{5a}{2}\right)^2+\dfrac{15}{4}\left(a+b+c\right)^2}\)
\(\Rightarrow VT\ge\sqrt{\dfrac{49}{4}\left(a+b+c\right)^2+\dfrac{15}{4}\left(a+b+c\right)^2}=4\left(a+b+c\right)\)
Dấu "=" xảy ra khi \(a=b=c\)