Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng quát: \(\frac{2}{\left(a-1\right)a\left(a+1\right)}=\frac{1}{\left(a-1\right).a}-\frac{1}{a\left(a+1\right)}\)
Ta có: \(S=\frac{2}{1.2.3}+\frac{2}{2.3.4}+.....+\frac{2}{2013.2014.2015}\)
\(S=\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+.....+\left(\frac{1}{2013.2014}-\frac{1}{2014.2015}\right)\)
\(S=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{2013.2014}-\frac{1}{2014.2015}\)
\(S=\frac{1}{1.2}-\frac{1}{2014.2015}=\frac{1}{2}-\frac{1}{2014.2015}<\frac{1}{2}\)
Vậy....................
S=(2/1.2-2/2.3)+(2/2.3-2/3.4)+(2/3.4-2/4.5)+...........+(2/2013.2014-2/2014-2/2015)
S=(2/1.2-2/2014.2015):2
S=1-2/2014.2/2015
--> S>1/2
\(S=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{23.24.25}\)
\(S=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{23.24}-\frac{1}{24.25}\right)\)
\(S=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{24.25}\right)\)
\(S=\frac{1}{4}-\frac{1}{24.50}\)
Dễ thấy với mọi số tự nhiên n > 1 , ta có :
\(\frac{2}{\left(n-1\right).n.\left(n+1\right)}=\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right).n.\left(n+1\right)}=\frac{1}{\left(n-1\right).n}-\frac{1}{n.\left(n+1\right)}\)
Sử dụng hệ thức trên cho từng số hạng trong tổng sau :
\(2S=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{\left(n-1\right).n.\left(n+1\right)}+\frac{2}{23.24.25}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{\left(n-1\right).n}-\frac{1}{n.\left(n+1\right)}+...+\frac{1}{23.24}-\frac{1}{24.25}\)
Để ý rằng trong vế phải của hệ thức trên , trừ 2 số hạng đầu và cuối , các số hạng còn lại tạo thành từng cặp đối nhau.
Do đó , có thể rút gọn :
\(2S=\frac{1}{1.2}-\frac{2}{24.25}=\frac{299}{600}\)
Vậy , ta được \(S=\frac{299}{600}\)
l don't no