K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2020

Xét tam giác ABC vuông tại A có AH là đường cao và AM là trung tuyến

Đặt \(\widehat{MAC}=\widehat{MCA}=x\)thì \(\widehat{BMA}=2x\)(theo tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông)

a) Ta có: \(\sin2x=\frac{AH}{AM}=2.\frac{AH}{BC}=2.\frac{AH}{AC}.\frac{AC}{BC}=2.\sin ACH.\cos ACB=2\cos x.\sin x\)

b) \(\cos2x=\frac{HM}{AM}=\frac{2HM}{BC}=\frac{2HC-2CM}{BC}=2.\frac{HC}{BC}-1=2.\frac{HC}{ AC}.\frac{AC}{BC}-1=2.\cos ACH.\cos ACB-1=2\cos^2x-1=2\cos^2x-\left(\sin^2x+\cos^2x\right)=\cos^2x-\sin^2x\)c) \(\tan2x=\frac{\sin2x}{\cos2x}=\frac{2\cos x.\sin x}{\cos^2x-\sin^2x}=\frac{2.\frac{\sin x}{\cos x}}{\frac{\cos^2x}{\cos^2x}-\frac{\sin^2x}{\cos^2x}}=\frac{2\tan x}{1-\tan^2x}\)

DD
22 tháng 6 2021

a) \(cos^4x-sin^4x=\left(cos^2x+sin^2x\right)\left(cos^2x-sin^2x\right)=cos^2x-sin^2x\)

b) \(\frac{1}{1+tanx}+\frac{1}{1+cotx}=\frac{1}{1+tanx}+\frac{tanxcotx}{tanxcotx+cotx}=\frac{1}{1+tanx}+\frac{tanx}{tanx+1}\)

\(=\frac{1+tanx}{1+tanx}=1\)

c) Ta có: \(1+tan^2x=1+\frac{sin^2x}{cos^2x}=\frac{cos^2x+sin^2x}{cos^2x}=\frac{1}{cos^2x}\)

\(\Rightarrow\frac{1}{1+tan^2x}=cos^2x\)

Tương tự \(\frac{1}{1+tan^2y}=cos^2y\)

\(\Rightarrow cos^2x-cos^2y=\frac{1}{1+tan^2x}-\frac{1}{1+tan^2y}\)

\(cos^2x-cos^2y=\left(1-sin^2x\right)-\left(1-sin^2y\right)=sin^2y-sin^2x\)

d) \(\frac{1+sin^2x}{1-sin^2x}=\frac{cos^2x+sin^2x+sin^2x}{cos^2x+sin^2x-sin^2x}=\frac{cos^2x+2sin^2x}{cos^2x}=1+2\left(\frac{sinx}{cosx}\right)^2=1+2tan^2x\)

NV
25 tháng 9 2019

ĐKXĐ: \(cosx\ne\frac{1}{2}\Rightarrow x\ne\pm\frac{\pi}{3}+k2\pi\)

\(cos2x+\sqrt{3}\left(1+sinx\right)=\frac{2cosx-1+4sinx.cosx-2sinx}{2cosx-1}\)

\(\Leftrightarrow cos2x+\sqrt{3}\left(1+sinx\right)=\frac{2cosx-1+2sinx\left(2cosx-1\right)}{2cosx-1}\)

\(\Leftrightarrow cos2x+\sqrt{3}+\sqrt{3}sinx=2sinx+1\)

\(\Leftrightarrow1-2sin^2x+\sqrt{3}\left(1+sinx\right)=2sinx+1\)

\(\Leftrightarrow2sin^2x+2sinx-\sqrt{3}\left(1+sinx\right)=0\)

\(\Leftrightarrow\left(2sinx-\sqrt{3}\right)\left(1+sinx\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\frac{\sqrt{3}}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{2}+k2\pi\\x=\frac{\pi}{3}+k2\pi\left(ktm\right)\\x=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Đề lỗi font. Bạn cần chỉnh sửa lại bằng công thức toán để được hỗ trợ tốt hơn.

 

Đề bị lỗi rồi bạn ơi