K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2018

Tập xác định D = R\{0} nên nếu x ≠ 0 và x ∈ D thì -x ∈ D

Vậy hàm số đã cho là hàm số lẻ.

16 tháng 11 2021

1: \(f\left(-x\right)=\left(-x\right)^2=x^2\)

Vậy: Hàm số này chẵn

17 tháng 2 2018

y = f(x) = 1/x

TXĐ: D = R \{0} ⇒ x ∈ D thì-x ∈ D

f(-x) = 1/(-x) = -1/x = -f(x)

Vậy y = f(x) = 1/x là hàm số lẻ.

3 tháng 11 2018

Đặt y = f(x) = (x + 2)2.

+ TXĐ: D = R nên với ∀x ∈ D thì –x ∈ D.

+ f(–x) = (–x + 2)2 = (x – 2)2 ≠ (x + 2)2 = f(x)

+ f(–x) = (–x + 2)2 = (x – 2)2 ≠ – (x + 2)2 = –f(x).

Vậy hàm số y = (x + 2)2 không chẵn, không lẻ.

16 tháng 12 2018

Đặt y = f(x) = x2 + x + 1.

+ TXĐ: D = R nên với ∀x ∈ D thì –x ∈ D.

+ f(–x) = (–x)2 + (–x) + 1 = x2 – x + 1 ≠ x2 + x + 1 = f(x)

+ f(–x) = (–x)2 + (–x) + 1 = x2 – x + 1 ≠ –(x2 + x + 1) = –f(x)

Vậy hàm số y = x2 + x + 1 không chẵn, không lẻ.

10 tháng 10 2019

y = √x

TXĐ: D = [0; +∞) ⇒ x ∈ D thì -x ∉ D

Vậy hàm số trên không là hàm số chẵn cũng không là hàm số lẻ.

5 tháng 12 2017

Đặt y = f(x) = |x|.

+ Tập xác định D = R nên với ∀ x ∈ D thì –x ∈ D.

+ f(–x) = |–x| = |x| = f(x).

Vậy hàm số y = |x| là hàm số chẵn.

5 tháng 5 2017

Đặt y = f(x) = x3 + x.

+ TXĐ: D = R nên với ∀x ∈ D thì –x ∈ D.

+ f(–x) = (–x)3 + (–x) = –x3 – x = – (x3 + x) = –f(x)

Vậy y = x3 + x là một hàm số lẻ.