Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1^3+2^3+3^3+...+n^3=\left(1+2+3+...+n\right)^2\)
\(=\left[\dfrac{n\left(n+1\right)}{2}\right]^2=\dfrac{n^2\cdot\left(n+1\right)^2}{4}\)
Từ hằng đẳng thức của đề bài,dễ thấy:
\(2^3=\left(1+1\right)^3=1^3+3.1^2+3.1+1\)
\(3^3=\left(2+1\right)^3=2^3+3.2^2+3.2+1\)
\(4^3=\left(3+1\right)^3=3^3+3.3^2+3.3+1\)
\(..........\)
\(\left(n+1\right)^3=n^3+3n^2+3n+1\)
Cộng từng vế của n đẳng thức trên ta được:
\(2^3+3^3+4^3+....+\left(n+1\right)^3=\)\(\left(1^3+3.1^2+3.1+1\right)+\left(2^3+3.2^2+3.2+1\right)+...+\left(n^3+3n^2+3n+1\right)\)
\(\Rightarrow\left(n+1\right)^3=1^3+3\left(1^2+2^2+....+n^2\right)+3\left(1+2+...+n\right)+n\)
\(\Rightarrow3\left(1^2+2^2+...+n^2\right)=\left(n+1\right)^3-3\left(1+2+...+n\right)-n-1^3\)
Từ 1-> n có: n-1+1=n (số hạng)
=>\(1+2+....+n=\frac{n.\left(n+1\right)}{2}\Rightarrow3\left(1+2+..+n\right)=\frac{3n\left(n+1\right)}{2}\)
Do đó \(3\left(1^2+2^2+...+n^2\right)=\left(n+1\right)^3-\frac{3n\left(n+1\right)}{2}-\left(n+1\right)\)
\(=\left(n+1\right).\left(n+1\right)^2-\frac{3n}{2}.\left(n+1\right)-\left(n+1\right)\)
\(=\left(n+1\right).\left[\left(n+1\right)^2-\frac{3n}{2}-1\right]\)
\(=\left(n+1\right).\left[n^2+2n+1-\frac{3n}{2}-1\right]=\left(n+1\right).\left[n^2+2n-\frac{3n}{2}+1-1\right]\)
\(=\left(n+1\right)\left(n^2+\frac{n}{2}\right)=\left(n+1\right).\left(\frac{2n^2+n}{2}\right)\)
\(=\frac{\left(n+1\right).\left(2n^2+n\right)}{2}=\frac{\left(n+1\right).n.\left(2n+1\right)}{2}=\frac{1}{2}n\left(n+1\right)\left(2n+1\right)\)
\(\Rightarrow S=\frac{1}{2}n\left(n+1\right)\left(2n+1\right):3=\frac{1}{6}n\left(n+1\right)\left(2n+1\right)\)
Vậy \(S=\frac{1}{6}n\left(n+1\right)\left(2n+1\right)\)
\(A=x^2+2xy+y^2-4x-4y+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1\)
\(=3^2-4.3+1\)
\(=-2\)
Chịu :)
S=n(n+1)mũ 2 trên 4