Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: TXĐ: D=R
b: \(f\left(-1\right)=\dfrac{2}{-1-1}=\dfrac{2}{-2}=-1\)
\(f\left(0\right)=\sqrt{0+1}=1\)
\(f\left(1\right)=\sqrt{1+1}=\sqrt{2}\)
\(f\left(2\right)=\sqrt{3}\)
3 là mệnh đề đúng, do khi \(\Delta< 0\) thì \(a.f\left(x\right)>0\) ; \(\forall a\ne0\)
a: Khi m=0 thì f(x)=-x2-x+1
f(x)<0
\(\Leftrightarrow-x^2-x+1< 0\)
\(\Leftrightarrow x^2+x-1>0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2-\dfrac{5}{4}>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}>\dfrac{\sqrt{5}}{2}\\x+1< -\dfrac{\sqrt{5}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{\sqrt{5}-1}{2}\\x< \dfrac{-\sqrt{5}-1}{2}\end{matrix}\right.\)
b: TH1: m=1
Pt sẽ là -2x+2=0
=>-2x=-2
hay x=1(loại)
TH2: m<>1
\(\text{Δ}=\left(m+1\right)^2-4\left(m-1\right)\left(m+1\right)\)
\(=m^2+2m+1-4m^2+4=-3m^2+2m+5\)
Để f(x) vô nghiệm thì \(3m^2-2m-5>0\)
\(\Leftrightarrow\left(3m-5\right)\left(m+1\right)>0\)
=>m>5/3 hoặc m<-1
\(f\left(x\right)=2\left(x^2-6x+9\right)=2\left(x-3\right)^2\)
\(\Rightarrow f\left(x\right)=0\) khi \(x=3\)
\(f\left(x\right)>0\) khi \(x\ne3\)
Vậy:
1. Là phát biểu sai
2. Là phát biểu đúng
3. Là phát biểu đúng
Đáp án: B
Ta có bảng xét dấu:
Dựa vào bảng xét dấu ta thấy: f(x) > 0 khi x < -7 hoặc -1 < x < 1 hoặc x > 3