K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2017

16 tháng 12 2018

Đáp án D.

Ta có

Khi đó

Đồng nhất hệ số, ta được

23 tháng 5 2018

4 tháng 1 2021

Ta có: 

\(\left(b-\dfrac{1}{2}\right)^2\ge0\) <=> \(b^2-b+\dfrac{1}{4}\ge0\) <=>\(b-\dfrac{1}{4}\le b^2\)

Mà : 

a<1 => \(log_a\left(b-\dfrac{1}{4}\right)\ge log_ab^2=2log_ab\)

P=\(log_a\left(b-\dfrac{1}{4}\right)-\dfrac{1}{2}log_{\dfrac{a}{b}}b=log_a\left(b-\dfrac{1}{4}\right)-\dfrac{1}{2}.\dfrac{log_ab}{1-log_ab}\ge2log_ab-\dfrac{1}{2}.\dfrac{log_ab}{1-log_ab}\)

Đặt t=logab

Do b<a<1 => t=logab >1

Khi đó \(P\ge2t+\dfrac{t}{2t-2}=f\left(t\right)\). Khảo sát f(t) trên (1;+\(\infty\)) ta đc

P\(\ge\)f(t) \(\ge\) f\(\left(\dfrac{3}{2}\right)\) = \(\dfrac{9}{2}\)

11 tháng 11 2017

Đáp án A

Gọi M(x;y) là điểm biều diễn số phức z.

Từ giả thiết, ta có |z - 4 - 3i| = 5  

=> M thuộc đường tròn (C) tâm I(4;3), bán kính R =   5

Khi đó P = MA + MB với A(-1;3), B(1;-1)

Ta có

Gọi E(0;1) là trung điểm của AB 

Do đó  mà  suy ra 

 

Với C là giao điểm của đường thẳng EI với đường tròn (C)

Vậy Dấu “=”xảy ra  

3 tháng 11 2018

Đáp án A.

Gọi M(x;y) là điểm biểu diễn số phức z.

Từ giả thiết, ta có 

=> M thuộc đường tròn (C) tâm I(4;3), bán kính R =  5

Khi đó P = MA + MB, với A(-1;3), B(1;-1)

Ta có 

Gọi E(0;1) là trung điểm của AB

 

Do đó   mà 

suy ra

Với C là giao điểm của đường thẳng EI với đường tròn (C).

Vậy  Dấu “=” xảy ra 

=> a + b = 10

31 tháng 3 2017

Đáp án A.

Gọi M(x;y) là điểm biểu diễn số phức z.

Từ giả thiết, ta có 

=> M thuộc đường tròn (C) tâm I(4;3), bán kính R =  5 . Khi đó P = MA + MB, với A(-1;3), B(1;-1)

Ta có: 

Gọi E(0;1) là trung điểm của AB 

Do đó  mà suy ra 

Với C là giao điểm của đường thẳng EI với đường tròn (C).

Vậy Dấu “=” xảy ra

AH
Akai Haruma
Giáo viên
19 tháng 3 2018

Lời giải:

Đặt \(\left\{\begin{matrix} \log_ab=x\\ \log_bc=y\\ \log_ca=z\end{matrix}\right.\Rightarrow \left\{\begin{matrix} \log_ba=\frac{1}{x}\\ \log_cb=\frac{1}{y}\\ \log_ac=\frac{1}{z}\end{matrix}\right. \). và \(xyz=1\)

Do \(a,b,c>1\Rightarrow x,y,z>0\)

Ta có:

\(P=\log_a(bc)+\log_b(ac)+4\log_c(ab)\)

\(=\log_ab+\log_ac+\log_ba+\log_bc+4\log_ca+4\log_cb\)

\(=x+\frac{1}{z}+\frac{1}{x}+y+4z+\frac{4}{y}\)

Áp dụng BĐT Cô-si cho các số dương:

\(\left\{\begin{matrix} x+\frac{1}{x}\geq 2\sqrt{1}=2\\ y+\frac{4}{y}\geq 2\sqrt{4}=4\\ \frac{1}{z}+4z\geq 2\sqrt{4}=4\end{matrix}\right.\) \(\Rightarrow P\geq 2+4+4=10\)

\(\Rightarrow m=10\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} x=\frac{1}{x}\rightarrow x=1\\ y=\frac{4}{y}\rightarrow y=2\\ \frac{1}{z}=4z\rightarrow z=\frac{1}{2}\end{matrix}\right.\) (thỏa mãn)

Suy ra \(n=\log_bc=y=2\)

\(\Rightarrow m+n=12\)