K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Coi 8 cuốn sách toán như 1 cuốn

=>Cần xếp 13 cuốn vào 13 vị trí khác nhau

=>Có 13! cách

Số cách xếp 8 cuốn sách toán là 8!(cách)

Số cách xếp là \(13!\cdot8!\)(cách)

NV
20 tháng 4 2023

Xếp 5 quyển Toán cạnh nhau: \(5!\) cách

Xếp 5 quyển Lý cạnh nhau: \(4!\) cách 

Xếp 3 quyển Văn cạnh nhau: \(3!\) cách

Hoán vị 3 loại Toán-Lý-Văn: \(3!\) cách

Tổng cộng có: \(5!.4!.3!.3!=...\) cách xếp thỏa mãn

25 tháng 4 2023

C.120

21 tháng 4 2023

a. Có bao nhiêu cách xếp 3 loại sách vào giá sách?

Để tính số cách xếp 3 loại sách vào giá sách, ta sử dụng công thức tổ hợp chập 3 của 3 số 4, 3 và 7 (vì có 3 loại sách là toán, lý và hoá):
C(4,3) * C(3,3) * C(7,3) = 4 * 1 * 35 = 140

Vậy có 140 cách xếp 3 loại sách vào giá sách.

b. Tính xác suất chọn được 5 quyển sao cho ít nhất 3 quyển hoá.

Để tính xác suất chọn được ít nhất 3 quyển hoá trong 5 quyển, ta phải tính tổng xác suất chọn được 3 quyển, 4 quyển hoặc 5 quyển hoá.

Xác suất chọn được 3 quyển hoá:
C(7,3) * C(7,2) / C(14,5) = 35 * 21 / 2002 = 0,372
Giải thích: Để chọn được 3 quyển hoá, ta chọn 3 quyển hoá từ 7 quyển hoá và chọn 2 quyển từ 7 quyển còn lại (toán và lý). Tổng số cách chọn 5 quyển là C(14,5).

Xác suất chọn được 4 quyển hoá:
C(7,4) * C(4,1) / C(14,5) = 35 * 4 / 2002 = 0,070
Giải thích: Để chọn được 4 quyển hoá, ta chọn 4 quyển hoá từ 7 quyển hoá và chọn 1 quyển từ 4 quyển toán và lý còn lại. Tổng số cách chọn 5 quyển là C(14,5).

Xác suất chọn được 5 quyển hoá:
C(7,5) / C(14,5) = 21 / 2002 = 0,010
Giải thích: Để chọn được 5 quyển hoá, ta chọn 5 quyển hoá từ 7 quyển hoá. Tổng số cách chọn 5 quyển là C(14,5).

Vậy, tổng xác suất chọn được ít nhất 3 quyển hoá trong 5 quyển là:
0,372 + 0,070 + 0,010 = 0,452

Vậy, xác suất chọn được ít nhất 3 quyển hoá trong 5 quyển là 0,452 (hoặc khoảng 45,2%).

15 tháng 5 2023

`\Omega_1=C_9 ^1=9`

`\Omega_2=C_13 ^2=78`

`@TH1:`

Gọi `A:`"Lấy từ hộp thứ nhất viên bi trắng."

   `=>A=C_5 ^1=5`

   `=>P(A)=5/9`

Gọi `B:`" Lấy từ hộp thứ hai `2` viên bi trắng."

   `=>B=C_8 ^2=28`

  `=>P(B)=5/9 . 28/78=70/351`

`@TH2:`

Gọi `C:`"Lấy từ hộp thứ nhất viên bi xanh."

    `=>C=C_4 ^1=4`

        `=>P(C)=4/9`

Gọi `D:`" Lấy từ hộp thứ hai `2` viên bi trắng."

    `=>D=C_7 ^2=21`

         `=>P(D)=4/9 . 21/78=14/117`

1 tháng 8 2021

Đánh số ba bạn là 1, 2, 3 và A1,A2,A3A1,A2,A3 là ba quyển sách Toán.

Giả sử tuần đầu tiên thầy cho bạn i mượn quyển sách AiAi,vậy thì 1−A12−A23−A31−A12−A23−A3

Sang tuần sau, muốn không cho bạn nào phải mượn quyển sách đã đọc thì có các khả năng sau:

1−A22−A33−A11−A22−A33−A1

hoặc 1−A32−A13−A21−A32−A13−A2.

Vậy có 2 cách.

2 tháng 8 2021

Bài toán yêu cầu tìm số cách cho mượn sách hay số hoán vị không lặp của 3 cuốn sách.

Có \(3!=1.2.3=6\) cách cho mượn.