Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+\dfrac{\dfrac{\left(1+2\right).2}{2}}{2}+\dfrac{\dfrac{\left(1+3\right).3}{2}}{3}+...+\dfrac{\dfrac{\left(1+2013\right).2013}{2}}{2013}\)
\(A=1+\dfrac{\dfrac{3.2}{2}}{2}+\dfrac{\dfrac{4.3}{2}}{3}+...+\dfrac{\dfrac{2014.2013}{2}}{2013}\)
\(A=1+\dfrac{3}{2}+\dfrac{2.3}{3}+...+\dfrac{1007.2013}{2013}\)
\(A=1+\dfrac{3}{2}+2+\dfrac{5}{2}...+1007\)
\(2A=2+3+4+5+6+...+2012+2013+2014\)
\(2A=\dfrac{\left(2+2014\right).2013}{2}\)
\(A=\dfrac{2016.2013}{4}=504.2013\)
\(B=\dfrac{-2}{1.3}+\dfrac{-2}{2.4}+...+\dfrac{-2}{2012.2014}+\dfrac{-2}{2013.2015}\)
\(-B=\dfrac{2}{1.3}+\dfrac{2}{2.4}+...+\dfrac{2}{2012.2014}+\dfrac{2}{2013.2015}\)
\(-B=\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2013.2015}\right)+\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{2012.2014}\right)\)
\(-B=\left(\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+...+\dfrac{2015-2013}{2013.2015}\right)+\left(\dfrac{4-2}{2.4}+\dfrac{6-4}{4.6}+...+\dfrac{2014-2012}{2012.2014}\right)\)
\(-B=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{2013}-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}+...+\dfrac{1}{2012}-\dfrac{1}{2014}\right)\)
\(-B=\left(1-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2}-\dfrac{1}{2014}\right)\)
\(-B=\dfrac{2014}{2015}+\dfrac{2012}{2014.2}=\dfrac{2014^2+1006.2015}{2015.2014}\)
\(B=\dfrac{2014^2+1006.2015}{-2015.2014}\)
a) \(2^x+2^{x+1}+2^{x+2}+2^{x+3}=480\)
\(\Rightarrow\)\(2^x+2^x.2+2^x.2^2+2^x.2^3=480\)
\(\Leftrightarrow\)\(2^x\left(1+2+2^2+2^3\right)=480\)
\(\Leftrightarrow\)\(2^x\left(1+2+4+8\right)=480\)
\(\Leftrightarrow\)\(2^x.15=480\)
\(\Rightarrow\)\(2^x=480:15\)
\(\Leftrightarrow2^x=32\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
Vậy x = 5.
\(\Leftrightarrow\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)\cdot x=\left(1+\dfrac{2011}{2}\right)+\left(1+\dfrac{2010}{3}\right)+...+\left(\dfrac{1}{2012}+1\right)+1\)
\(\Leftrightarrow x\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}\right)=\dfrac{2013}{2}+\dfrac{2013}{3}+...+\dfrac{2013}{2013}\)
=>x=2013
Câu 1:
\(\Rightarrow \left[\begin{array}{} x+\frac{1}{2}=0\\ \frac{2}{3}-2x=0 \end{array} \right.\)
\(\Leftrightarrow \left[\begin{array}{} x=\frac{-1}{2}\\ x=\frac{1}{3} \end{array} \right.\)
Vậy phương trình có tập nghiệm S={\(\frac{-1}{2};\frac{1}{3}\)}
Câu 2:
\(\Rightarrow \left[\begin{array}{} 3x-10=0\\ 5-\frac{1}{2}x=0 \end{array} \right.\)
\(\Leftrightarrow \left[\begin{array}{} x-=\frac{10}{3}\\ x=10 \end{array} \right.\)
Vậy phương trình có tập nghiệm S={\(10;\frac{10}{3}\)}
Câu 3:
\(\Leftrightarrow \frac{1}{3}x=\frac{65}{4}-\frac{53}{4}\)
\( \Leftrightarrow \frac{1}{3}x=\frac{12}{4}\)
\(\Leftrightarrow x=9\)
Vậy phương trình có tập nghiệm S={9}
Câu 4:
\(\Leftrightarrow \frac{2}{3}x=\frac{2}{3}\)
\(\Leftrightarrow x=1\)
Vậy phương trình có tập nghiệm S={1}
Câu 5:
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x(x+1)}=\frac{2010}{2011}\)
\(\Leftrightarrow 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2010}{2011}\)
\(\Leftrightarrow 1-\frac{1}{x+1}=\frac{2010}{2011}\)
\(\Leftrightarrow \frac{x}{x+1}=\frac{2010}{2011}\)
\(\Rightarrow 2010x+2010=2011x\)
\(\Leftrightarrow x=2010\)
Vậy phương trình có tập nghiệm S={2010}
cảm ơn bạn Hoàng Bình Bảo nha nhưng mà đây là toán lớp 6 mà bạn
1.Tính hợp lý:
a. 1152 - (374 + 1152) + (374 - 65) = 1152 - 374 - 1152 + 374 - 65 = ( 1152 - 1152 ) + ( -65) + ( 374 - 374 ) = 0 + ( - 65) + 0 = -65
Bài 1 : Tính hợp lý : c. \(\dfrac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}\) = \(\dfrac{11.3^{29}-3^{30}}{2^2.3^{28}}\) = \(\dfrac{3^{29}.\left(11-3\right)}{2^2.3^{28}}\) = \(\dfrac{3^{29}.2^3}{2^2.3^{28}}\) = 6
1) \(\dfrac{1}{2011}+\dfrac{2012.2010}{2011}-2012\)=\(\dfrac{1+2012.2010-2012.2011}{2011}\)
= \(\dfrac{1+2012.\left(2010-2011\right)}{2011}\)= \(\dfrac{1+2012.\left(-1\right)}{2011}\)
= \(\dfrac{-2011}{2011}=-1\)
\(A=\dfrac{1}{3}x+x-\dfrac{4}{3}x=0\)
Do đó: Khi x=2011/2012 thì A=0