Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pt <=> (x+y)^3-3xy(x+y)+(x+y)^3+39xy=4394 , đặt x+y=a,xy=b -> pt <=> 2a^3-3ab+39b=4394 rổi biểu diễn b theo a
-chắc ko khả thi rồi,số bự quá <(")
Lời giải:
Ta có $x+my=2\Rightarrow x=2-my$. Thay vào PT $(2)$:
$m(2-my)-3my=3m+3$
$\Leftrightarrow -y(m^2+3m)=m+3$
$\Leftrightarrow -ym(m+3)=m+3(*)$
Để hệ PT ban đầu có nghiệm thì $(*)$ có nghiệm $y$
Điều này xảy ra khi $m(m+3)\neq 0\Leftrightarrow m\neq 0;-3$
Khi đó:
$y=\frac{m+3}{-m(m+3)}=-\frac{1}{m}$
$x=2-my=3$
Như vậy:
$y=8x^2$
$\Leftrightarrow \frac{-1}{m}=72\Leftrightarrow m=-72$
Vậy........
Điều kiện \(x\ge0\)
\(\sqrt{x}=x\Leftrightarrow\sqrt{x}\left(1-\sqrt{x}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Ta có:
\(x^4+4=\left(x^4+4x^2+4\right)-4x^2\)
=\(\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)
=> \(x^4+4\) chia hết cho \(x^2+2x+a\) khi \(\left(x^2+2x+2\right)\left(x^2-2x+2\right)⋮\left(x^2+2x+a\right)\)
=> a = 2.