K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2016

Q(0)=1 nên a.02+b.0+c=1 nên c=1

Q(1)=3 nên a+b+c=3 nên a+b= 2(vì c=1)       (1)

Q(-1)=2 nên a-b+c=2 nên a-b=1(vì c=1)           (2)

từ (1) và (2) nên a=1,5 và b=0,5

Ta có: f(0)=1

<=> ax+bx+c=1

<=> c=1

          f(1)=0

<=>ax+bx+c=0

<=> a+b+c=0

mà c=1

=>a+b=-1(1)

      f(-1)=10

<=> ax2 +bx +c=10

<=>a-b+c=10

mà c=1

=>a-b=9(2)

Lấy (1) trừ (2) ta được (a+b)-(a-b)=-1-9

                           <=> 2b=-10

                           <=> b=-5

                           =>a=4

Vậy a=4,b=-5,c=1

Nhớ k đúng cho mik

Câu 2 : \(f\left(x\right)=ax^2+bx+c=0\)

Vì theo đề:f(x)=0 với mọi giá trị của x nên t cho x nhận 3 giá trị tùy ý

Giả sử x=0;x=1;x=-1 là 3 giá trị đó.

Ta có:f(0)=a.02+b.0+c=c

f(1)=a.12+b.1+c=a+b+c

f(-1)=a.(-1)2+b.(-1)+c=a-b+c

Do đó c=0;a+b+c=0;a-b+c=0

=>a-b=0=>a=b

và a+b=0=>a=b=0

Vậy a=b=c=0

8 tháng 3 2019

1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)

và \(f\left(1\right)=-1\Rightarrow a+b=-1\)

Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)

Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)

Suy ra \(ax+b=-x+b\)

Vậy ...

8 tháng 3 2019

1.b) Y chang câu a!

AH
Akai Haruma
Giáo viên
20 tháng 2 2018

Lời giải:

Ta có: \(\left\{\begin{matrix} P(1)=Q(2)\\ P(-1)=Q(5)\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 2+a+4=4-10+b\\ 2-a+4=25-25+b\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} -a+b=12\\ a+b=6\end{matrix}\right.\)

\(\Rightarrow 2b=12+6=18\Leftrightarrow b=9\), suy ra \(a=-3\)

b) Theo bài ra ta có:

\(\left\{\begin{matrix} B(0)=4\\ B(1)=3\\ B(-1)=7\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c=4\\ a.1^2+b.1+c=a+b+c=3\\ a.(-1)^2+b(-1)+c=a-b+c=7\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} c=4\\ a+b=-1\\ a-b=3\end{matrix}\right.\)

Cộng 2 PT cuối cho nhau: \(\Rightarrow 2a=-1+3=2\Leftrightarrow a=1\)

\(\Rightarrow b=-2\)

Vậy \((a,b,c)=(1,-2,4)\)

6 tháng 5 2018

Ta có \(f\left(x\right)\)có nghiệm là -1

=> \(f\left(-1\right)=0\)

=> \(\left(-1\right)^3+\left(-1\right)^3a+\left(-1\right)b-2=0\)

=> \(-1-a-b-2=0\)

=> \(-3-a-b=0\)

=> \(-a-b=3\)

=> \(-\left(a-b\right)=3\)

=> \(a-b=-3\)

=> \(a=-3+b\)(1)

và f (x) cũng có nghiệm là 1

=> \(f\left(1\right)=0\)

=> \(1^3+a.1^3+b-2=0\)

=> \(1+a+b-2=0\)

=> \(-1+a+b=0\)

=> \(a+b=1\)(2)

Thế (1) vào (2), ta có:

\(-3+b+b=1\)

=> \(-3+2b=1\)

=> \(2b=1+3\)

=> \(2b=4\)

=> \(b=2\)

=> \(a=-3+2=-1\)

Câu 5:

Theo đề, ta có: f(-3)=0

=>9a+12+6=0

=>9a=-18

hay a=-2

14 tháng 8 2021

Mình cảm ơn ạ

29 tháng 3 2021

Vì đa thức g(x) là đa thức bậc 3 và mọi nghiệm của f(x) cũng là của g(x) nên:

G/s \(g\left(x\right)=\left(x-1\right)\left(x+3\right)\left(x-c\right)\) \(\left(c\inℝ\right)\)

Khi đó: \(x^3-ax^2+bx-3=\left(x-1\right)\left(x+3\right)\left(x-c\right)\)

\(\Leftrightarrow x^3-ax^2+bx-3=\left(x^2+2x-3\right)\left(x-c\right)\)

\(\Leftrightarrow x^3-ax^2+bx-3=x^3-\left(c-2\right)x^2-\left(2c+3\right)x+3c\)

Đồng nhất hệ số ta được:

\(\hept{\begin{cases}a=c-2\\b=-2c-3\\c=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=-1\\c=-1\end{cases}}\)

Vậy a = -3 , b = -1

30 tháng 3 2021

đồng nhất hệ số mình chưa học nha