K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2019

Phá tung cái ngoặc ra thôi mà nhỉ?

a) \(\left(3x-5\right)\left(3x+b\right)=9x^2+\left(3b-15\right)x-5b\)

Đồng nhất hệ số ta có: \(\left\{{}\begin{matrix}9=a\\3b-15=1\\-5b=c\end{matrix}\right.\) giải cái hệ 3 pt này là thu được a, b, c

9 tháng 9 2019

Câu đấy là \(\left(2x-5\right)\) mà bạn. tth

4 tháng 4 2017

Ta có  T = ( a x   +   4 ) ( x 2   +   b x   –   1 )

=   a x . x 2   +   a x . b x   +   a x . ( - 1 )   +   4 . x 2   +   4 . b x   +   4 . ( - 1 )     =   a x 3   +   a b x 2   –   a x   +   4 x 2   +   4 b x   –   4     =   a x 3   +   ( a b x 2   +   4 x 2 )   +   ( 4 b x   –   a x )   –   4     =   a x 3   +   ( a b   +   4 ) x 2   +   ( 4 b   –   a ) x   –   4

 

Theo bài ra ta có

( a x   +   4 ) ( x 2   +   b x   –   1 )   =   9 x 3   +   58 x 2   +   15 x   +   c đúng với mọi x

ó a x 3   +   ( a b   +   4 ) x 2   +   ( 4 b   –   a ) x   –   4   =   9 x 3   +   58 x 2   +   15 x   +   c đúng với mọi x.

ó a = 9 a b + 4 = 58 4 b - a = 15 - 4 = c  ó a = 9 9 . b = 54 4 b - a = 15 c = - 4  ó   a = 9 b = 6 c = - 4

Vậy a = 9, b = 6, c = -4

Đáp án cần chọn là: B

9 tháng 9 2019

Tiểu biểu một câu thôi, mấy câu còn lại tương tự. 

Tư tưởng là phân tích vế trái để sử dụng đồng nhất hệ số.

b) \(\left(ax+b\right)\left(x^2-x-1\right)=ax^3+cx^2-1\)

\(\Leftrightarrow ax^3-ax^2+bx^2-ax-bx-b=ax^3+cx^2-1\)

\(\Leftrightarrow ax^3+x^2\left(-a+b\right)-x\left(a+b\right)-b=ax^3+c\cdot x^2-0\cdot x-1\)

Đồng nhất hệ số:

\(\hept{\begin{cases}-a+b=c\\a+b=0\\b=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=-1\\b=1\\c=2\end{cases}}\)

Các câu còn lại tương tự.

18 tháng 5 2017

Trả lời nhanh giúp mình với, các bạn ơi! Mình rất cần đấy!

27 tháng 10 2017

nhân hết ra rồi đống nhất hệ số hai bên là được

30 tháng 8 2019

bạn ghi lại đề đi mình chả hiểu cái mô tê gì cả

14 tháng 7 2018

a) (2x - 5)(3x + b) = ax^2 + x + c
<=> 6x^2 + 2bx -15x -5b = ax^2 + x + c
<=> -ax^2 + 2bx -5b -c = -6x^2 +16x
Đồng nhất hệ số ta có :
+) -a = -6 => a= 6
+) 2b = 16 => b= 8
+) -5b -c= 0 => c= -40

c ) (ax+b)( x^2 -x-1)= ax^3 - cx^2 - 1
<=> ax^3 -ax^2-ax +bx^2-bx-b= ax^3 - cx^2 - 1
<=> (c+b-a)x^2 -(a+b)x -b = -1
Đồng nhất hệ số ta được:
+) c+b-a =0
+) -a-b = 0
+) -b = -1 => b= 1
Thay b=1 ta được a = -1 và c= -2

<p>a) (2x - 5)(3x + b) = ax^2 + x + c<br>&lt;=&gt; 6x^2 + 2bx -15x -5b =&nbsp;ax^2 + x + c<br>&lt;=&gt; -ax^2 + 2bx -5b -c = -6x^2 +16x<br>Đồng nhất hệ số ta có :<br>+) -a = -6 =&gt; a= 6<br>+) 2b = 16 =&gt; b= 8<br>+) -5b -c= 0 =&gt; c= -40</p>

22 tháng 8 2018

(2x-5)(3x+b)=ax2+x+c

<=> 6x2+2bx-15x-5b=ax2+x+c

Đồng nhất hệ số ta được

\(\left\{{}\begin{matrix}a=6\\2b-15=1\\-5b=c\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=6\\b=8\\-40\end{matrix}\right.\)

Các câu sau giải tương tự

15 tháng 9 2018

nhầm mọi ng giúp mk nhoa

a: \(\Leftrightarrow10x^2-5xc-6x+3c=ax^2+bx+21\)

=>a=10; -5c-6=b; c=7

=>a=10; c=7; b=-5c-6=-35-6=-41

b: \(\Leftrightarrow2x^3+2bx^2-2x+4x^2+4bx-4=9x^3+58x^2+15x+c\)

=>\(\left(b,c\right)\in\varnothing\)

14 tháng 8 2020

a) ( 2x + 3 )( 3x + a ) = bx2 + cx - 3

<=> 2x( 3x + a ) + 3( 3x + a ) = bx2 + cx - 3

<=> 6x2 + 2ax + 9x + 3a = bx2 + cx - 3

<=> 6x2 + ( 2a + 9 )x + 3a = bx2 + cx - 3

Đồng nhất hệ số 

=> \(\hept{\begin{cases}b=6\\2a+9=c\\3a=-3\end{cases}}\Rightarrow\hept{\begin{cases}b=6\\c=7\\a=-1\end{cases}}\)

b) ( ax + 1 )( x2 - bx + 3 ) = 2x3 - x2 + 5x + c

<=> ax( x2 - bx + 3 ) + x2 - bx + 3 = 2x3 - x2 + 5x + c

<=> ax3 - abx2 + 3ax + x2 - bx + 3 = 2x3 - x2 + 5x + c 

<=> ax3 + ( 1 - ab )x2 + ( 3a - b )x + 3 = 2x3 - x2 + 5x + c

Đồng nhất hệ số 

=> \(\hept{\begin{cases}a=2\\1-ab=-1\\3a-b=5\end{cases}}\)và c = 3 => \(\hept{\begin{cases}a=2\\b=1\\c=3\end{cases}}\)

14 tháng 8 2020

a) Ta có: 

\(\left(2x+3\right)\left(3x+a\right)=bx^2+cx-3\)

\(\Leftrightarrow6x^2+\left(2a+9\right)x+3a=bx^2+cx-3\)

Đồng nhất hệ số ta được:

\(\hept{\begin{cases}6=b\\2a+9=c\\a=-1\end{cases}}\Rightarrow\hept{\begin{cases}a=-1\\b=6\\c=7\end{cases}}\)

b) \(\left(ax+1\right)\left(x^2-bx+3\right)=2x^3-x^2+5x+c\)

\(\Leftrightarrow ax^3+\left(1-ab\right)x^2+\left(3a-b\right)x+3=2x^3-x^2+5x+c\)

\(\Rightarrow\hept{\begin{cases}a=2\\1-ab=-1\\3a-b=5\end{cases}}\&c=3\)

\(\Rightarrow\hept{\begin{cases}a=2\\b=1\\c=3\end{cases}}\)