K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2018

Ta có  2 x − y = 4 ( m − 1 ) x + 2 y = m

⇔ y = 2 x − 4 2 y = ( 1 − m ) x + m ⇔ y = 2 x − 4 y = 1 − m 2 x + m 2

Để hệ phương trình 2 x − y = 4 ( m − 1 ) x + 2 y = m vô nghiệm thì đường thẳng d: y = 2x – 4 song song với đường thẳng d’: y = 1 − m 2 x + m 2  suy ra

1 − m 2 = 2 m 2 ≠ − 4 ⇔ 1 − m = 4 m ≠ − 8 ⇔ m = − 3 m ≠ − 8 ⇔ m = − 3

Đáp án: D

20 tháng 1 2021

Hệ đã cho vô nghiệm khi

\(m+2=\dfrac{m+1}{3}\ne\dfrac{3}{4}\Leftrightarrow m=-\dfrac{5}{2}\)

8 tháng 7 2018

Xét hệ x − ( m − 2 ) y = 2 ( m − 1 ) x − 2 y = m − 5

⇔ ( m − 2 ) y = x − 2 2 y = ( m − 1 ) x − m + 5 ⇔ ( m − 2 ) y = x − 2 y = m − 1 2 x − m 2 + 5 2

TH1: Với m – 2 = 0 ⇔ m = 2 ta có hệ 0. y = x − 2 y = 1 2 x + 3 2 ⇔ x = 2 y = 1 2 x + 3 2

Nhận thấy hệ này có nghiệm duy nhất vì hai đường thẳng x = 2 và y = 1 2 x + 3 2 cắt nhau

TH2: Với m – 2 ≠ 0m ≠ 2 ta có hệ: ( m − 2 ) y = x − 2 y = m − 1 2 x − m 2 + 5 2 ⇔ y = 1 m − 2 x − 2 m − 2 y = m − 1 2 x − m 2 + 5 2

 

Để hệ phương trình đã cho có nghiệm duy nhất thì hai đường thẳng: d : y = 1 m − 2 x − 2 m − 2 và d ' : y = m − 1 2 x − m 2 + 5 2 cắt nhau

⇔ 1 m − 2 ≠ m − 1 2 ⇔ m   –   1 m   –   2 ≠ 2 ⇔   m 2 – 3 m + 2 ≠ 2   ⇔ m 2 – 3 m   0

Suy ra m ≠ {0; 2; 3}

Kết hợp cả TH1 và TH2 ta có m ≠ {0; 3}

Vậy hệ phương trình đã cho có nghiệm duy nhất khi m ≠ {0; 3}

Đáp án: C

a: \(\left\{{}\begin{matrix}mx+2y=m+2\\\left(2m-1\right)x+\left(m+1\right)y=2\left(m+1\right)\end{matrix}\right.\)

Khi m=3 thì hệ sẽ là:

3x+2y=5 và 5x+4y=8

=>x=2 và y=-1/2

b: Hệ có nghiệm duy nhất thì \(\dfrac{m}{2m-1}< >\dfrac{2}{m+1}\)

=>m^2+m<>4m-2

=>m^2-3m+2<>0

=>m<>1 và m<>2

hệ có vô số nghiệm thì \(\dfrac{m}{2m-1}=\dfrac{2}{m+1}=\dfrac{2}{2\left(m+1\right)}=\dfrac{1}{m+1}\)

=>m/2m-1=2/m+1 và 2/m+1=1/m+1(vô lý)

=>Ko có m thỏa mãn

Để hệ vô nghiệm thì m/2m-1=2/m+1<>1/m+1

=>m=2 hoặc m=1

21 tháng 6 2019

Để hệ phương trình x + y = − 1 m x + y = 2 m vô nghiệm thì m 1 = 1 1 ≠ 2 m 1

⇔ m = 1 m ≠ 1 2 ⇒ m = 1

Đáp án: A