Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $A=(mx^2+nx+1)^2$
$\Leftrightarrow x^4-6x^3+ax^2+bx+1=m^2x^4+n^2x^2+1+2mnx^3+2mx^2+2nx
$=m^2x^4+2mnx^3+x^2(n^2+2m)+2nx+1$
Đồng nhất hệ số: \(\left\{\begin{matrix} m^2=1\\ 2mn=-6\\ n^2+2m=a\\ 2n=b\end{matrix}\right.\)\(\Leftrightarrow \left\{\begin{matrix} m=\pm 1(1)\\ mn=-3(2)\\ n^2+2m=a(3)\\ 2n=b(4)\end{matrix}\right.\)
Từ $(1);(2)\Rightarrow (m,n)=(1,-3); (-1;3)$
Nếu $(m,n)=(1,-3)$:
Từ $(3);(4)\Rightarrow a=11; b=-6$
Nếu $(m,n)=(-1,3)$
Từ $(3);(4)\Rightarrow a=7; b=6$
Vậy.............
Để \(f\left(x\right)⋮g\left(x\right)\)thì \(f\left(x\right)=g\left(x\right)\cdot q\)( với q là hằng số )
Khi đó ta có pt :
\(x^5-2x^4-6x^3+ax^2+bx+c=\left(x^2-1\right)\left(x-3\right)\cdot q\)
\(\Leftrightarrow x^5-2x^4-6x^3+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\left(x-3\right)\cdot q\)
Vì pt trên đúng với mọi x nên :
+) đặt \(x=1\)
\(pt\Leftrightarrow1^5-2\cdot1^4-6\cdot1^3+a\cdot1^2+b\cdot1+c=\left(1-1\right)\left(1+1\right)\left(1-3\right)\cdot q\)
\(\Leftrightarrow-7+a+b+c=0\)
\(\Leftrightarrow a+b+c=7\)(1)
Chứng minh tương tự, lần lượt đặt \(x=-1\)và \(x=3\)ta có các pt :
\(\hept{\begin{cases}3+a-b+c=0\\-81+9a+3b+c=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b+c=-3\\9a+3b+c=81\end{cases}}}\)(2)
Từ (1) và (2) ta có hệ pt 3 ẩn :
\(\hept{\begin{cases}a+b+c=7\\a-b+c=-3\\9a+3b+c=81\end{cases}}\)
Giải hệ ta được \(\hept{\begin{cases}a=8\\b=5\\c=-6\end{cases}}\)
Vậy....
Bạn tham khảo tại đây:
Câu hỏi của Nguyễn Phan Thục Trinh - Toán lớp 8 - Học toán với OnlineMath