Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x+5}{2005}+\dfrac{x+6}{2004}+\dfrac{x+7}{2003}=-3\)
=>\(\left(\dfrac{x+5}{2005}+1\right)+\left(\dfrac{x+6}{2004}+1\right)+\left(\dfrac{x+7}{2003}+1\right)=0\)
=>\(\left(x+2010\right)\left(\dfrac{1}{2005}+\dfrac{1}{2004}+\dfrac{1}{2003}\right)=0\)
=>\(x+2010=0\)(do\(\dfrac{1}{2005}+\dfrac{1}{2004}+\dfrac{1}{2003}\)khác 0)
=>x=-2010
Vậy...
Ta có :
\(\frac{x+3}{2003}+\frac{x+2}{2004}+\frac{x+1}{2005}=-3\)
\(\Leftrightarrow\)\(\left(\frac{x+3}{2003}+1\right)\left(\frac{x+2}{2004}+1\right)\left(\frac{x+1}{2005}+1\right)=-3+3\)
\(\Leftrightarrow\)\(\frac{x+2006}{2003}+\frac{x+2006}{2004}+\frac{x+2006}{2005}=0\)
\(\Leftrightarrow\)\(\left(x+2006\right)\left(\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}\right)=0\)
Vì \(\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}\ne0\)
Nên \(x+2006=0\)
\(\Rightarrow\)\(x=-2006\)
Vậy \(x=-2006\)
Chúc bạn học tốt ~
\(\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}=\dfrac{x-5}{2004}+\dfrac{x-4}{2005}+\dfrac{x-3}{2006}\)
\(\Leftrightarrow\left(\dfrac{x-8}{2001}+1\right)+\left(\dfrac{x-7}{2002}+1\right)+\left(\dfrac{x-6}{2003}+1\right)=\left(\dfrac{x-5}{2004}+1\right)+\left(\dfrac{x-4}{2005}+1\right)+\left(\dfrac{x-3}{2006}+1\right)\)
\(\Leftrightarrow\dfrac{x-2009}{2001}+\dfrac{x-2009}{2002}+\dfrac{x-2009}{2003}-\dfrac{x-2009}{2004}-\dfrac{x-2009}{2005}-\dfrac{x-2009}{2006}=0\)
\(\Leftrightarrow\left(x-2009\right).\left(\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}-\dfrac{1}{2004}-\dfrac{1}{2005}-\dfrac{1}{2006}\right)=0\)
\(\text{Mà}:\left(\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}-\dfrac{1}{2004}-\dfrac{1}{2005}-\dfrac{1}{2006}\right)\ne0\)
\(\Rightarrow x-2009=0\Rightarrow x=2009\)
\(\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}=\dfrac{x-5}{2004}+\dfrac{x-4}{4}+\dfrac{x-5}{2006}\)
\(\Leftrightarrow\left(\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}\right)-3=\left(\dfrac{x-5}{2004}+\dfrac{x-4}{4}+\dfrac{x-5}{2006}\right)-3\)
\(\Leftrightarrow\left(\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}\right)-\left(1+1+1\right)=\left(\dfrac{x-5}{2004}+\dfrac{x-4}{2005}+\dfrac{x-5}{2006}\right)-\left(1+1+1\right)\)
\(\Leftrightarrow\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}-1-1-1=\dfrac{x-5}{2004}+\dfrac{x-4}{2005}+\dfrac{x-5}{2006}-1-1-1\)
\(\Leftrightarrow\left(\dfrac{x-8}{2001}-1\right)+\left(\dfrac{x-7}{2002}-1\right)+\left(\dfrac{x-6}{2003}-1\right)=\left(\dfrac{x-5}{2004}-1\right)+\left(\dfrac{x-4}{2005}-1\right)+\left(\dfrac{x-5}{2006}-1\right)\)
\(\)\(\Leftrightarrow\dfrac{x-2009}{2001}+\dfrac{x-2009}{2002}+\dfrac{x-2009}{2003}=\dfrac{x-2009}{2004}+\dfrac{x-2009}{2006}+\dfrac{x-2009}{2006}\)
\(\Leftrightarrow\left(\dfrac{x-2009}{2001}+\dfrac{x-2009}{2002}+\dfrac{x-2009}{2003}\right)-\left(\dfrac{x-2009}{2004}+\dfrac{x-2009}{2006}+\dfrac{x-2009}{2006}\right)=0\)
\(\Leftrightarrow\dfrac{x-2009}{2001}+\dfrac{x-2009}{2002}+\dfrac{x-2009}{2003}-\dfrac{x-2009}{2004}-\dfrac{x-2009}{2006}-\dfrac{x-2009}{2006}=0\)
\(\Leftrightarrow\left(x-2009\right)\left(\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}-\dfrac{1}{2004}-\dfrac{1}{2005}-\dfrac{1}{2006}\right)=0\)
\(\Leftrightarrow x-2009=0\)
\(\Leftrightarrow x=2009\)
Vậy \(x=2009\)
có x mà sao ko có VP vậy