K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2020

(x+5)(2-x)=3\(\sqrt{x^2+3x}\)

<=> -x2-3x+10= 3\(\sqrt{x^2+3x}\)

 ⇔ x2 + 3x + 3√(x2 + 3x) - 10 = 0

Đặt t = √(x2 + 3x), t ≥ 0. Phương trình đã cho trở thành

t2 + 3t - 10 = 0 ⇔ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vì t ≥ 0 ⇒ t = 2, thay vào ta có √(x2 + 3x) = 2

⇔ x2 + 3x - 4 = 0 ⇔ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vậy phương trình có nghiệm là x = 1 và x = -4

NV
22 tháng 10 2019

a/ \(\Leftrightarrow x^2+5x-2-2\sqrt[3]{x^2+5x-2}+4=0\)

Đặt \(\sqrt[3]{x^2+5x-2}=a\)

\(a^3-2a+4=0\)

\(\Leftrightarrow\left(a+2\right)\left(a^2-2a+2\right)=0\Rightarrow a=-2\)

\(\Rightarrow\sqrt[3]{x^2+5x-2}=-2\Rightarrow x^2+5x+6=0\Rightarrow...\)

b/ ĐKXĐ:...

\(\Leftrightarrow-3\left(-x^2+4x+10\right)-5\sqrt{-x^2+4x+10}+42=0\)

Đặt \(\sqrt{-x^2+4x+10}=a\ge0\)

\(-3a^2-5a+42=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{14}{3}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+4x+10}=3\Rightarrow x^2-4x-1=0\Rightarrow...\)

NV
22 tháng 10 2019

c/ ĐKXĐ: ...

\(\Leftrightarrow x^2+3x+3\sqrt{x^2+3x}-10=0\)

Đặt \(\sqrt{x^2+3x}=a\ge0\)

\(a^2+3a-10=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-5\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+3x}=2\Rightarrow x^2+3x-4=0\)

d/ ĐKXĐ: \(-1\le x\le2\)

\(\Leftrightarrow\sqrt{3-x+x^2}=1+\sqrt{2+x-x^2}\)

\(\Leftrightarrow3-x+x^2=3+x-x^2+2\sqrt{2+x-x^2}\)

\(\Leftrightarrow2+x-x^2+\sqrt{2+x-x^2}-2=0\)

Đặt \(\sqrt{2+x-x^2}=a\ge0\)

\(a^2+a-2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2+x-x^2}=1\Leftrightarrow x^2-x-1=0\)

e/ \(\Leftrightarrow\sqrt{x^2-3x+3}-1+\sqrt{x^2-3x+6}-2=0\)

\(\Leftrightarrow\frac{x^2-3x+2}{\sqrt{x^2-3x+3}+1}+\frac{x^2-3x+2}{\sqrt{x^2-3x+6}+2}=0\)

\(\Leftrightarrow\left(x^2-3x+2\right)\left(\frac{1}{\sqrt{x^2-3x+3}+1}+\frac{1}{\sqrt{x^2-3x+6}+2}\right)=0\)

\(\Leftrightarrow x^2-3x+2=0\)

25 tháng 12 2020

a, ĐK: \(x\ge\dfrac{1}{5}\)

\(pt\Leftrightarrow\sqrt{5x^2+x+3}+5x-1-2\sqrt{5x-1}+1+x^2+2x+1=-2\)

\(\Leftrightarrow\sqrt{5x^2+x+3}+\left(\sqrt{5x-1}-1\right)^2+\left(x+1\right)^2=-2\)

\(\Rightarrow\) Phương trình vô nghiệm

a: ĐKXĐ: x^2-2x<>0 và x^2-1>0

=>(x>1 và x<>2) hoặc x<-1

b: ĐKXĐ: x+1>0 và 5-3x>0

=>x>-1 và 3x<5

=>-1<x<5/3

c: DKXĐ: 5x+3>=0 và 3-x>0

=>x>=-3/5 và x<3

=>-3/5<=x<3

d: ĐKXĐ: 4-x^2>0 và 1+x>=0

=>x^2<4 và x>=-1

=>-2<x<2 và x>=-1

=>-1<=x<2

e: ĐKXĐ: 2-3x<>0 và 1-6x>0

=>x<>2/3 và x<1/6

=>x<1/6

3 tháng 2 2019

đa phần mình sử dụng phương pháp liên hợp nha bạn

\(\sqrt{a}-\sqrt{b}=\dfrac{a-b}{\sqrt{a}+\sqrt{b}}\)

b. điều kiện \(\dfrac{1}{4}\le x\le\dfrac{3}{8}\), pt:

\(\Leftrightarrow\sqrt{3-8x}-\sqrt{4x-1}=6x-2\\ \Leftrightarrow\dfrac{3-8x-4x+1}{\sqrt{3-8x}+\sqrt{4x-1}}=2\left(3x-1\right)\\ \Leftrightarrow\dfrac{-4\left(3x-1\right)}{\sqrt{3-8x}+\sqrt{4x-1}}=2\left(3x-1\right)\\ \Leftrightarrow2\left(3x-1\right)+\dfrac{4\left(3x-1\right)}{\sqrt{3-8x}+\sqrt{4x-1}}=0\\ \Leftrightarrow2\left(3x-1\right)\left(1+\dfrac{2}{\sqrt{3-8x}+\sqrt{4x-1}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\left(n\right)\\1+\dfrac{2}{\sqrt{3-8x}+\sqrt{4x-1}}=0\left(vn\right)\end{matrix}\right.\)

d. điều kiện: \(x\le-4\cup x\ge0\), pt:

\(\Leftrightarrow1-\sqrt{x^2-3x+3}=\sqrt{2x^2+x+2}-\sqrt{x^2+4x}\\ \Leftrightarrow\dfrac{1-x^2+3x-3}{1+\sqrt{x^2-3x+3}}=\dfrac{2x^2+x+2-x^2-4x}{\sqrt{2x^2+x+2}+\sqrt{x^2+4x}}\\ \Leftrightarrow\dfrac{-\left(x-1\right)\left(x-2\right)}{1+\sqrt{x^2-3x+3}}=\dfrac{\left(x-1\right)\left(x-2\right)}{\sqrt{2x^2+x+2}+\sqrt{x^2+4x}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(n\right)\\x=1\left(n\right)\\\dfrac{-1}{1+\sqrt{x^2-3x+3}}=\dfrac{1}{\sqrt{2x^2+x+2}+\sqrt{x^2+4x}}\left(vn\right)\end{matrix}\right.\)

e. điều kiện:x thuộc R

\(\Leftrightarrow\sqrt{x^2+15}-4=3x-3+\sqrt{x^2+8}-3\\ \Leftrightarrow\dfrac{x^2+15-16}{\sqrt{x^2+15}+4}=3\left(x-1\right)+\dfrac{x^2+8-9}{\sqrt{x^2+8}+3}\\ \Leftrightarrow\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+15}+4}-3\left(x-1\right)-\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+8}+3}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\dfrac{\left(x+1\right)}{\sqrt{x^2+15}+4}-3-\dfrac{\left(x+1\right)}{\sqrt{x^2+8}+3}=0\left(1\right)\end{matrix}\right.\)

(1) mình không biết có vô nghiệm không nữa và cũng thua luôn

f. điều kiện: \(x\ge-2\)

bài này giải cách hơi khác một chút

đặt \(a=\sqrt{x+5}\left(\ge0\right)\\ b=\sqrt{x+2}\left(\ge0\right)\)

pt:

\(\Leftrightarrow\left(\sqrt{x+5}-\sqrt{x+2}\right)\left[\left(1+\sqrt{\left(x+5\right)\left(x+2\right)}\right)\right]\\ \Rightarrow\left(a-b\right)\left(1+ab\right)=3\left(1\right)\)

\(a^2-b^2=x+5-x-2=3\\ \Rightarrow\left(a-b\right)\left(a+b\right)=3\left(2\right)\)

=> (1) = (2)

\(\Leftrightarrow\left(a-b\right)\left(1+ab\right)=\left(a-b\right)\left(a+b\right)\\ \Leftrightarrow\left(a-b\right)\left(1+ab-a-b\right)=0\\ \Leftrightarrow\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\)

TH1: a=b \(\Leftrightarrow\sqrt{x+5}=\sqrt{x+2}\Leftrightarrow x+5=x+2\left(vn\right)\)

TH2: a=1\(\Leftrightarrow\sqrt{x+5}=1\Leftrightarrow x=-4\left(l\right)\)

TH3: b=1\(\Leftrightarrow\sqrt{x+2}=1\Leftrightarrow x=-1\left(n\right)\)

g. điều kiện: \(x\le-\sqrt{2}\cup x\ge\dfrac{7+\sqrt{37}}{2}\)

pt:

\(\dfrac{3x^2-7x+3-3x^2+5x+1}{\sqrt{3x^2-7x+2}+\sqrt{x^2-3x-4}}=\dfrac{x^2-2-x^2+3x-4}{\sqrt{3x^2-5x-1}+\sqrt{x^2-2}}\\ \Leftrightarrow\dfrac{-2\left(x-2\right)}{\sqrt{3x^2-7x+2}+\sqrt{x^2-3x-4}}=\dfrac{3\left(x-2\right)}{\sqrt{3x^2-5x-1}+\sqrt{x^2-2}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\left(n\right)\\\dfrac{-2}{\sqrt{3x^2-7x+2}+\sqrt{x^2-3x-4}}=\dfrac{3}{\sqrt{3x^2-5x-1}+\sqrt{x^2-2}}\left(vn\right)\end{matrix}\right.\)h. điều kiện \(x\le-2-\sqrt{7}\cup x\ge-2+\sqrt{7}\)

\(\sqrt{2x^2+x-1}-\sqrt{x^2+4x-3}=\sqrt{2x^2+4x-3}-\sqrt{3x^2+x-1}\\ \Leftrightarrow\dfrac{2x^2+x-1-x^2-4x+3}{\sqrt{2x^2+x-1}+\sqrt{x^2+4x-3}}=\dfrac{2x^2+4x-3-3x^2-x+1}{\sqrt{2x^2+4x-3}+\sqrt{3x^2+x-1}}\\ \Leftrightarrow\dfrac{x^2-3x+2}{\sqrt{2x^2+x-1}+\sqrt{x^2+4x-3}}=\dfrac{-\left(x^2-3x+2\right)}{\sqrt{2x^2+4x-3}+\sqrt{3x^2+x-1}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+2=0\Leftrightarrow x=1\left(n\right),x=2\left(n\right)\\\dfrac{1}{\sqrt{2x^2+x-1}+\sqrt{x^2+4x-3}}=\dfrac{-1}{\sqrt{2x^2+4x-3}+\sqrt{3x^2+x-1}}\left(vn\right)\end{matrix}\right.\)

(nhớ tích cho mình nha, mấy bài kia mình ko biết làm huhu)

10 tháng 2 2019

thank bn

25 tháng 2 2017

1/ \(3x^2+4x-3=4x\sqrt{4x-3}\)

\(\Leftrightarrow\left(4x^2-4x\sqrt{4x-3}+4x-3\right)-x^2=0\)

\(\Leftrightarrow\left(2x-\sqrt{4x-3}\right)^2-x^2=0\)

\(\Leftrightarrow\left(3x-\sqrt{4x-3}\right)\left(x-\sqrt{4x-3}\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}3x=\sqrt{4x-3}\\x=\sqrt{4x-3}\end{matrix}\right.\)

\(\Leftrightarrow\left[\begin{matrix}9x^2-4x+3=0\\x^2-4x+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[\begin{matrix}x=1\\x=3\end{matrix}\right.\)

17 tháng 6 2019

3.\(pt\Leftrightarrow\sqrt{3x+8}-\sqrt{3x+5}=\sqrt{5x-4}-\sqrt{5x-7}\)

\(\Leftrightarrow\frac{3x+8-5x+4}{\sqrt{3x+8}+\sqrt{5x+4}}-\frac{3x+5-5x+7}{\sqrt{3x+5}+\sqrt{5x+7}}=0\)

\(\Leftrightarrow\left(12-2x\right)\left(\frac{1}{\sqrt{3x+8}+\sqrt{5x+4}}+\frac{1}{\sqrt{3x+5}+\sqrt{5x+7}}\right)=0\)

\(\Rightarrow x=6\)

1. \(x^3-x^2+12x\sqrt{x-1}+20=0\) 2. \(x^3+\sqrt{\left(x-1\right)^3}=9x+8\) 3. \(\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}=3x\) 4. \(x^6+\left(x^3-3\right)^3=3x^5-9x^2-1\) 5. \(x^2-6\left(x+3\right)\sqrt{x+1}+14x+3\sqrt{x+1}+13=0\) 6. \(x^2-4x+\left(x-3\right)\sqrt{x^2-x+1}=-1\) 7. \(\sqrt{2x-1}+\sqrt{5-x}=x-2+2\sqrt{-2x^2+11x-5}\) 8. \(\sqrt{5x+11}-\sqrt{6-x}+5x^2-14x-60=0\) 9. \(x^2+6x+8=3\sqrt{x+2}\) 10. \(2x^2+3x-2=\left(2x-1\right)\sqrt{2x^2+x-3}\) 11....
Đọc tiếp

1. \(x^3-x^2+12x\sqrt{x-1}+20=0\)

2. \(x^3+\sqrt{\left(x-1\right)^3}=9x+8\)

3. \(\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}=3x\)

4. \(x^6+\left(x^3-3\right)^3=3x^5-9x^2-1\)

5. \(x^2-6\left(x+3\right)\sqrt{x+1}+14x+3\sqrt{x+1}+13=0\)

6. \(x^2-4x+\left(x-3\right)\sqrt{x^2-x+1}=-1\)

7. \(\sqrt{2x-1}+\sqrt{5-x}=x-2+2\sqrt{-2x^2+11x-5}\)

8. \(\sqrt{5x+11}-\sqrt{6-x}+5x^2-14x-60=0\)

9. \(x^2+6x+8=3\sqrt{x+2}\)

10. \(2x^2+3x-2=\left(2x-1\right)\sqrt{2x^2+x-3}\)

11. \(\sqrt{x+1}+\sqrt{4-x}-\sqrt{\left(x+1\right)\left(4-x\right)}=1\)

12. \(x^2-\sqrt{x^2-4x}=4\left(x+3\right)\)

13. \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)

14. \(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}=1\)

15. \(\sqrt{2x^2+3x+2}+\sqrt{4x^2+6x+21}=11\)

16. \(\sqrt{x+3+3\sqrt{2x-3}}+\sqrt{x-1+\sqrt{2x-1}}=2\sqrt{2}\)

17. \(\left(x-2\right)^2\left(x-1\right)\left(x-3\right)=12\)

18. \(2x^2+\sqrt{x^2-2x-19}=4x+74\)

19. \(x^4+x^2-20=0\)

20. \(x+\sqrt{4-x^2}=2+3x\sqrt{4-x^2}\)

21. \(\left(x^2+x+1\right)\left(\sqrt[3]{\left(3x-2\right)^2}+\sqrt[3]{3x-2}+1\right)=9\)

22. \(\sqrt{x^2-3x+5}+x^2=3x+7\)

23. \(x^2+6x+5=\sqrt{x+7}\)

24. \(\frac{2x^2-3x+10}{x+2}=3\sqrt{\frac{x^2-2x+4}{x+2}}\)

25. \(5\sqrt{x-1}-\sqrt{x+7}=3x-4\)

26. \(2\left(x^2+2\right)=5\sqrt{x^3+1}\)

27. \(\sqrt{x-1}+\sqrt{5-x}-2=2\sqrt{\left(x-1\right)\left(5-x\right)}\)

28. \(x^2+\frac{9x^2}{\left(x-3\right)^2}=40\)

29. \(\frac{26x+5}{\sqrt{x^2+30}}+2\sqrt{26x+5}=3\sqrt{x^2+30}\)

30. \(\frac{\sqrt{27+x^2+x}}{2+\sqrt{5-\left(x^2+x\right)}}=\frac{\sqrt{27+2x}}{2+\sqrt{5-2x}}\)

12
20 tháng 3 2020

28. \(x^2+\frac{9x^2}{\left(x-3\right)^2}=40\) DK: \(x\ne3\)

PT\(\Leftrightarrow\left(x+\frac{3x}{x-3}\right)^2-6\frac{x^2}{x-3}-40=0\)\(\Leftrightarrow\frac{x^4}{\left(x-3\right)^2}-6\frac{x^2}{x-3}-40=0\)

Dat \(\frac{x^2}{x-3}=a\). PTTT \(a^2-6a-40=0\)\(\Leftrightarrow\left(a-10\right)\left(a+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=10\\a=-4\end{matrix}\right.\)

giai tiep

20 tháng 3 2020

14. \(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}=1\) DK: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

PT\(\Leftrightarrow\frac{\sqrt{x}-1+\sqrt{x}+1}{x-1}=1\Leftrightarrow2\sqrt{x}=x-1\)\(\Leftrightarrow x-2\sqrt{x}+1=2\Leftrightarrow\left(\sqrt{x}-1\right)^2=2\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3+2\sqrt{2}\\x=3-2\sqrt{2}\end{matrix}\right.\)

NV
2 tháng 10 2019

a/ ĐKXĐ: \(x^2+3x+2\ge0\)

\(\Leftrightarrow3-2\sqrt{x^2+3x+2}=1-2\sqrt{x^2-x+1}\)

\(\Leftrightarrow\sqrt{x^2+3x+2}=\sqrt{x^2-x+1}+1\)

\(\Leftrightarrow x^2+3x+2=x^2-x+1+1+2\sqrt{x^2-x+1}\)

\(\Leftrightarrow2x=\sqrt{x^2-x+1}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\4x^2=x^2-x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\3x^2+x-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{-1+\sqrt{13}}{6}\\x=\frac{-1-\sqrt{13}}{6}\left(l\right)\end{matrix}\right.\)

NV
2 tháng 10 2019

b/ ĐKXĐ: \(3x^2-7x+2\ge0\)

\(\Leftrightarrow\sqrt{3x^2-5x+7}=3-\sqrt{3x^2-7x+2}\) (1)

\(\Rightarrow3x^2-5x+7=9+3x^2-7x+2-6\sqrt{3x^2-7x+2}\)

\(\Rightarrow2-x=3\sqrt{3x^2-7x+2}\) (\(x\le2\))

\(\Rightarrow\left(2-x\right)^2=9\left(3x^2-7x+2\right)\)

\(\Rightarrow x^2-4x+4=27x^2-63x+18\)

\(\Rightarrow26x^2-59x+14=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=\frac{7}{26}\end{matrix}\right.\)

Do bước biến đổi thứ 2 ko phải phép tương đương nên cần thay 2 nghiệm vào (1) để kiểm tra lại, bạn tự thay nhé