Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này quá dễ
x/40 - x/50= 1/3
<=>5x/200 - 4x/200=1/3
<=> x/200= 1/3
<=> x= 200/3.
bạn ê, mik bị ngu toán, lười suy nghĩ ấy mà nên đừng nói dễ hay khó j vs mik
Giải pt à bạn:P?
\(\left(x+4\right)\left(x^2-4x+16\right)-\left(x-2\right)^3=0\)
\(\Leftrightarrow x^3+4^3-\left(x^3-8-6x^2+12x\right)=0\)
\(\Leftrightarrow x^3+4^3-x^3+8+6x^2-12x=0\)
\(\Leftrightarrow72+6x^2-12x=0\Leftrightarrow6\left(x^2-2x+12\right)=0\Leftrightarrow x^2-2x+12=0\)
Ta lại có: \(x^2-2x+12=x^2-2x+1+11=\left(x-1\right)^2+11\ge11>0\ne0\)
=> Pt vô nghiệm.
`[x+1]/2021+[x+2]/2020+[x+3]/2019+[x+4]/2018=-4`
`<=>[x+1]/2021+1+[x+2]/2020+1+[x+3]/2019+1+[x+4]/2018+1=-4+4`
`<=>[x+1+2021]/2021+[x+2+2020]/2020+[x+3+2019]/2019+[x+4+2018]/2018=0`
`<=>[x+2022]/2021+[x+2022]/2020+[x+2022]/2019+[x+2022]/2018=0`
`<=>(x+2022)(1/2021+2020+1/2019+1/2018)=0`
Mà `1/2021+2020+1/2019+1/2018 \ne 0`
`=>x+2022=0`
`<=>x=-2022`
Vậy `S={-2022}`
Bài 2:
Xét ΔBDC có BE/ED=BF/FC
nên EF//DC
mà DC//AB
nên EF//AB
a: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
\(\widehat{ADH}\) chung
Do đó: ΔADH∼ΔBDA
b: Xét ΔHAD vuông tại H và ΔHBA vuông tại H có
\(\widehat{HAD}=\widehat{HBA}\)
Do đó: ΔHAD∼ΔHBA
Suy ra: HA/HB=HD/HA
hay \(HA^2=HB\cdot HD\)
a) Xét \(\Delta ADH\) và \(\Delta BDA:\)
\(\widehat{H}=\widehat{A}\left(=90^o\right).\)
\(\widehat{D}\) chung.
\(\Rightarrow\Delta ADH\sim\Delta BDA\left(g-g\right).\)
b) Xét \(\Delta BDA\) và \(\Delta BAH:\)
\(\widehat{BAD}=\widehat{BHA}\left(=90^o\right).\)
\(\widehat{B}\) chung.
\(\Rightarrow\Delta BDA\sim\) \(\Delta BAH\left(g-g\right).\)
Mà \(\Delta ADH\sim\Delta BDA\left(cmt\right).\)
\(\Rightarrow\Delta ADH\sim\Delta BAH.\)
\(\Rightarrow\dfrac{AH}{BH}=\dfrac{DH}{AH}\) (2 cạnh tương ứng).
\(\Rightarrow AH^2=DH.BH.\)
\(ĐKXĐ:a,b,c\ne0\)
\(\frac{x-a}{bc}+\frac{x-b}{ca}+\frac{x-c}{ab}=\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\)
\(\Leftrightarrow\frac{xa-a^2}{abc}+\frac{xb-b^2}{abc}+\frac{xc-c^2}{abc}=\frac{2bc}{abc}+\frac{2ac}{abc}+\frac{2ab}{abc}\)
\(\Leftrightarrow\frac{xa-a^2+xb-b^2+xc-c^2}{abc}=\frac{2bc+2ac+2ab}{abc}\)
\(\Leftrightarrow xa-a^2+xb-b^2+xc-c^2=2bc+2ac+2ab\)
\(\Leftrightarrow xa+xb+xc=2bc+2ac+2ab+a^2+b^2+c^2\)
\(\Leftrightarrow x\left(a+b+c\right)=\left(a+b+c\right)^2\)
\(\Leftrightarrow x=a+b+c\)
Vậy x = a + b + c
\(ĐKXĐ:a,b,c\ne0\)
\(\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}+\frac{4x}{a+b+c}=1\)
\(\Leftrightarrow\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}=1-\frac{4x}{a+b+c}\)
\(\Leftrightarrow1+\frac{a+b-x}{c}+1+\frac{b+c-x}{a}+1+\frac{c+a-x}{b}=4\)
\(-\frac{4x}{a+b+c}\)
\(\Leftrightarrow\frac{a+b+c-x}{c}+\frac{a+b+c-x}{a}+\frac{a+b+c-x}{b}=\)
\(\frac{4\left(a+b+c\right)}{a+b+c}-\frac{4x}{a+b+c}\)
\(\Leftrightarrow\frac{a+b+c-x}{c}+\frac{a+b+c-x}{a}+\frac{a+b+c-x}{b}=\)
\(\frac{4\left(a+b+c-x\right)}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c-x\right)\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b+c}\right)=0\)
\(\Rightarrow\left(a+b+c-x\right)=0\)hoặc \(\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b+c}\right)=0\)
+) Nếu \(\Rightarrow\left(a+b+c-x\right)=0\)thì x = a + b + c
+) Nếu \(\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b+c}\right)=0\)thì x thỏa mãn với mọi số
`x/40 - x/50 =0,3`
`<=> x/40-x/50 =3/10`
`<=> (5x)/200 - (4x)/200 = 60/200`
`<=> 5x-4x=60`
`<=>x=60`
Vậy phương trình có nghiệm `x=60`
\(\dfrac{x}{40}-\dfrac{x}{50}=0,3\)
\(\Leftrightarrow\dfrac{55x}{200}-\dfrac{4x}{200}=\dfrac{60}{200}\)
\(\Leftrightarrow x=60\)
\(\text{Vậy phương trình có tập nghiệm là }S=\left\{60\right\}\)