K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2021

\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

30 tháng 6 2016

\(4x^4+4x^3-x^2-x\)

\(=4x^3\left(x+1\right)-x\left(x+1\right)\)

\(=\left(x+1\right)\left(4x^3-x\right)\)

\(=x\left(x+1\right)\left(4x^2-1\right)\)

\(=x\left(x+1\right)\left[\left(2x\right)^2-1\right]\)

\(=x\left(x+1\right)\left(2x+1\right)\left(2x-1\right)\)

(Nhớ k cho mình với nhá!)

30 tháng 6 2016

vậy x= 0 ,25

=>x=0,25

nhớ cho mik nha

18 tháng 10 2021

1.A

2.C

3.B

4.C

15 tháng 12 2021

a

c

b

c

DD
16 tháng 1 2022

\(x^4+4x^3+2x^2-4x+1\)

\(=x^4+2x^3-x^2+2x^3+4x^2-2x-x^2-2x+1\)

\(=x^2\left(x^2+2x-1\right)+2x\left(x^2+2x-1\right)-\left(x^2+2x-1\right)\)

\(=\left(x^2+2x-1\right)^2\)

6 tháng 1 2022

\(=x^2\left(x-1\right)-4\left(x-1\right)^2=\left(x-1\right)\left[x^2-4\left(x-1\right)\right]\\ =\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2\right)^2\)

6 tháng 1 2022

THAM KHẢO

20 tháng 10 2017

x2 + 4x – 2xy – 4y + y2 = (x2-2xy+ y2) + (4x – 4y) → bạn Việt dùng phương pháp nhóm hạng tử

= (x - y)2 + 4(x – y) → bạn Việt dùng phương pháp dùng hằng đẳng thức và đặt nhân tử chung

= (x – y)(x – y + 4) → bạn Việt dùng phương pháp đặt nhân tử chung

19 tháng 11 2021

\(=\left(x^2+x\right)^2+4\left(x^2+x\right)+4-16\\ =\left(x^2+x+2\right)^2-16\\ =\left(x^2+x+2-4\right)\left(x^2+x+2+4\right)\\ =\left(x^2+x-2\right)\left(x^2+x+6\right)\\ =\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)

19 tháng 11 2021

=\(x^4+2x^3+x^2+4x^2+4x-12\)

=\(x^4+2x^3+5x^2+4x-12\)

=\(x^4-x^3+3x^3-3x^2+8x^2+4x-12\)

=\(x^3(x-1)+3x^2(x-1)+4(2x^2+x-3)\)

=\(x^3(x-1)+3x^2(x-1)+4(2x^2-2x+3x-3)\)

=\(x^3(x-1)+3x^2(x-1)+4[2x(x-1)+3(x-1)]\)

=\(x^3(x-1)+3x^2(x-1)+4(x-1)(2x+3)\)

=\((x-1)[x^3+3x^2+4(2x+3)]\)

=\((x-1)(x^3+3x^2+8x+12)\)