Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x^4-4x^3-6x^2-4x+1=0\)(*)
<=> \(x^4+4x^2+1-4x^3-4x+2x^2-12x^2=0\)
<=> \(\left(x^2-2x+1\right)^2=12x^2\)
<=>\(\left(x-1\right)^4=12x^2\) <=> \(\left[{}\begin{matrix}\left(x-1\right)^2=\sqrt{12}x\\\left(x-1\right)^2=-\sqrt{12}x\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x^2-2x+1-\sqrt{12}x=0\left(1\right)\\x^2-2x+1+\sqrt{12}x=0\left(2\right)\end{matrix}\right.\)
Giải (1) có: \(x^2-2x+1-\sqrt{12}x=0\)
<=> \(x^2-2x\left(1+\sqrt{3}\right)+\left(1+\sqrt{3}\right)^2-\left(1+\sqrt{3}\right)^2+1=0\)
<=> \(\left(x-1-\sqrt{3}\right)^2-3-2\sqrt{3}=0\)
<=> \(\left(x-1-\sqrt{3}\right)^2=3+2\sqrt{3}\) <=> \(\left[{}\begin{matrix}x-1-\sqrt{3}=\sqrt{3+2\sqrt{3}}\\x-1-\sqrt{3}=-\sqrt{3+2\sqrt{3}}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(ktm\right)\\x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(tm\right)\end{matrix}\right.\)
=> \(x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)
Giải (2) có: \(x^2-2x+1+\sqrt{12}x=0\)
<=> \(x^2-2x\left(1-\sqrt{3}\right)+\left(1-\sqrt{3}\right)^2-\left(1-\sqrt{3}\right)^2+1=0\)
<=> \(\left(x+\sqrt{3}-1\right)^2=3-2\sqrt{3}\) .Có VP<0 => PT (2) vô nghiệm
Vậy pt (*) có nghiệm x=\(-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)
Bài 2:
b: \(=\left(x^2+x+4+3x\right)\left(x^2+x+4+5x\right)\)
\(=\left(x^2+4x+4\right)\left(x^2+6x+4\right)\)
\(=\left(x+2\right)^2\cdot\left(x^2+6x+4\right)\)
c: \(=25x^2-49y^2-\left(5x+7y\right)\)
=(5x+7y)(5x-7y-1)
d: \(8x^3-36x^2+54x-27=\left(2x-3\right)^3\)
Ta có: 5 x 4 – 7 x 2 – 2 = 3 x 4 – 10 x 2 – 3
⇔ 5 x 4 – 7 x 2 – 2 – 3 x 4 + 10 x 2 + 3 = 0
⇔ 2 x 4 + 3 x 2 + 1 = 0
Đặt m = x 2 . Điều kiện m ≥ 0
Ta có: 2 x 4 + 3 x 2 + 1 = 0 ⇔ 2 m 2 + 3m + 1 = 0
Phương trình 2 m 2 + 3m + 1 = 0 có hệ số a = 2, b = 3, c = 1 nên có dạng :
a – b + c = 0 suy ra m 1 = -1, m 2 = -1/2
Cả hai giá trị của m đều nhỏ hơn 0 nên không thỏa mãn điều kiện bài toán.
Vậy phương trình vô nghiệm.
`x^4 -4sqr{3} -5 =0`
`<=> x^4 = 5 +4sqrt{3}`
`<=> x = +- root{4}{5+4sqrt(3)}`
Vậy `S ={ +- root{4}{5+4sqrt(3)} }`