K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`x/4 - 2 > 2,05`

`x/4 > 4,05`

`x > 16,2`

Vậy `GTNN` của `x là `17` (Nếu `x` là số tự nhiên)

\(x>4-\dfrac{2}{2.05}\)

mà x là số tự nhiên nhỏ nhất thỏa mãn

nên x=0

17 tháng 12 2017

Vì (x-2)^2 >= 0 nên 4+(x-2)^2 >=4

Dấu "=" xảy ra <=> x-2 = 0 <=> x=2

Vậy Min 4+(x-2)^2 = 4 <=> x=2

k mk nha

22 tháng 5 2019

a, Với x = 1015 , ta có : 

\(A=\frac{2002-1998:(1015-16)}{316+6,84:0,01}\)

\(A=\frac{2002-1998:999}{316+\frac{684}{100}:\frac{1}{100}}\)

\(A=\frac{2002-2}{316+\frac{171}{25}\cdot100}\)

\(A=\frac{2000}{316+\frac{171}{1}\cdot4}\)

\(A=\frac{2000}{316+684}=\frac{2000}{1000}=2\)

b, Tự làm

24 tháng 6 2018

a)Để  \(A=2003-\frac{1003}{999-x}\) có giá trị nhỏ nhất

\(\Rightarrow\frac{1003}{999-x}\) có giá trị lớn nhất

\(\frac{1003}{999-x}\ge1003\) 

Dấu "=" xảy ra khi

\(\frac{1003}{999-x}=1003\)

=> 999 - x = 1

x = 999-1

x = 998

=> giá trị nhỏ nhất của \(A=2003-\frac{1003}{999-998}=2003-1003=1000\) tại x = 998

b) Để \(A=2003-\frac{1003}{999+x}\) đạt giá trị nhỏ nhất

=> \(\frac{1003}{999+x}\) có giá trị lớn nhất

mà x là số tự nhiên

\(\Rightarrow\frac{1003}{999+x}\ge\frac{1003}{999}\)

Dấu "=" xảy ra khi

1003/(999+x) = 1003/999

=> 999 + x = 999

x = 0

=> giá trị nhỏ nhất của A = 2003 - 1003/999+0  = 2003 - 1003/999 = 2002 và 4/999 tại x = 0