Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x>4-\dfrac{2}{2.05}\)
mà x là số tự nhiên nhỏ nhất thỏa mãn
nên x=0
Vì (x-2)^2 >= 0 nên 4+(x-2)^2 >=4
Dấu "=" xảy ra <=> x-2 = 0 <=> x=2
Vậy Min 4+(x-2)^2 = 4 <=> x=2
k mk nha
a, Với x = 1015 , ta có :
\(A=\frac{2002-1998:(1015-16)}{316+6,84:0,01}\)
\(A=\frac{2002-1998:999}{316+\frac{684}{100}:\frac{1}{100}}\)
\(A=\frac{2002-2}{316+\frac{171}{25}\cdot100}\)
\(A=\frac{2000}{316+\frac{171}{1}\cdot4}\)
\(A=\frac{2000}{316+684}=\frac{2000}{1000}=2\)
b, Tự làm
a)Để \(A=2003-\frac{1003}{999-x}\) có giá trị nhỏ nhất
\(\Rightarrow\frac{1003}{999-x}\) có giá trị lớn nhất
\(\frac{1003}{999-x}\ge1003\)
Dấu "=" xảy ra khi
\(\frac{1003}{999-x}=1003\)
=> 999 - x = 1
x = 999-1
x = 998
=> giá trị nhỏ nhất của \(A=2003-\frac{1003}{999-998}=2003-1003=1000\) tại x = 998
b) Để \(A=2003-\frac{1003}{999+x}\) đạt giá trị nhỏ nhất
=> \(\frac{1003}{999+x}\) có giá trị lớn nhất
mà x là số tự nhiên
\(\Rightarrow\frac{1003}{999+x}\ge\frac{1003}{999}\)
Dấu "=" xảy ra khi
1003/(999+x) = 1003/999
=> 999 + x = 999
x = 0
=> giá trị nhỏ nhất của A = 2003 - 1003/999+0 = 2003 - 1003/999 = 2002 và 4/999 tại x = 0
`x/4 - 2 > 2,05`
`x/4 > 4,05`
`x > 16,2`
Vậy `GTNN` của `x là `17` (Nếu `x` là số tự nhiên)