Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x2 - 98 = 0
2x2 = 0 + 98
2x2 = 98
x2 = 98 : 2
x2 = 49
x = \(\sqrt{49}\)
=> x = 7
Ta có : 2x2 - 98 = 0
=> 2(x2 - 49) = 0
Mà : 2 > 0
Nên x2 - 49 = 0
=> x2 = 49
=> x2 = -7;7
1)\(36\left(x-y\right)^2-49\left(x+y\right)^2\)
\(=\left(6x-6y+7x+7y\right)\left(6x-6y-7x-7y\right)\)
\(=\left(13x+y\right)\left(-x-13y\right)\)
\(=-\left(13x+y\right)\left(x+13y\right)\)
2)\(16x^2-9\left(x+y\right)^2=\left(4x+3x+3y\right)\left(4x-3x-3y\right)=\left(7x+3y\right)\left(x-3y\right)\)
TA CO: A\(=x^4-10x^3+25x^2+12\)
\(=x^2\left(x^2-10x+25\right)+12\)
\(=x^2\left(x-5\right)^2+12\)
\(Do\)\(\left(x-5\right)^2\ge0\Rightarrow x^2\left(x-5\right)^2\ge0\)
\(\Rightarrow A\ge12\)
Dau''=''xay ra khi vµ chi khi:
\(\left(x-5\right)^2=0\)
\(\Rightarrow x-5=0\)
\(\Rightarrow x=5\)
Vay MAX A=12 khi x=5
a) \(36-12x+x^2\) \(=6^2-2.6.x+x^2\)
\(=\left(6-x\right)^2\)
b) \(4x^2+12x+9=\left(2x\right)^2+2.2x.3+3^2\)
\(=\left(2x+3\right)^2\)
c) \(-25x^6-y^8+10x^3y^4=-\left[25x^6-10x^3y^4+y^8\right]\)
\(=-\left[\left(5x^3\right)^2-2.5x^3.y^4+\left(y^4\right)^2\right]\)
\(=-\left(5x^3-y^4\right)^2\)
d) \(\dfrac{1}{4}x^2-5xy+25y^2=\left(\dfrac{1}{2}x\right)^2-2.\dfrac{1}{2}x.5y+\left(5y\right)^2\)
\(=\left(\dfrac{1}{2}x-5y\right)^2\)
Học tốt~~~
a. \(36-12x+x^2=6^2-2.6.x+x^2=\left(6-x\right)^2\)
b. \(4x^2+12x+9=\left(2x\right)^2+2.2x.3+3^2=\left(2x+3\right)^2\)
c: \(=-\left(25x^6-10x^3y^4+y^8\right)\)
\(=-\left(5x^3-y^4\right)^2\)
d: \(=\left(\dfrac{1}{2}x\right)^2-2\cdot\dfrac{1}{2}x\cdot5y+\left(5y\right)^2=\left(\dfrac{1}{2}x-5y\right)^2\)
\(5x^2y^3-25x^2y^2+10x^2y^4=5x^2y^2\left(y-5+2y^2\right)\)
\(12a^4-24a^2b^2-6ab=6a\left(2a^3-4ab^2-3b\right)\)
mk chỉnh đề
\(-25x^6-y^8+10x^3y^4=-\left(5x^3-y^4\right)^2\)
\(25-\left(3-x\right)^2=\left(5-3+x\right)\left(5+3-x\right)=\left(2+x\right)\left(8-x\right)\)
Áp dụng hằng đẳng thức
a) x2+16x+64
=> x2+2.8x+82
=> (x+8)2
b) 25x2+10x+1
=> (5x+1)2
c) x2-12x+36
=> (x+6)2
d) 4x2-4x+1
=> (2x-1)2
e) x2-2x+1
=> (x-1)2
\(x^4-10x^3+25x^2=36\)
➜\(x^4-10x^3=25x^2-36=0\)
➜\(x^3\left(x-3\right)-7x^2\left(x-3\right)+4x\left(x-3\right)+12\left(x-3\right)=0\)
➜\(\left(x-3\right)\left(x^3-7x^2+x+12\right)=0\)
➜\(\left(x-3\right)\left(x-2\right)\left(x+1\right)\left(x-6\right)=0\)
➜\(\left[{}\begin{matrix}x-3=0\\x-2=0\\x+1=0\\x-6=0\end{matrix}\right.\text{➜}\left[{}\begin{matrix}x=3\\x=2\\x=-1\\x=6\end{matrix}\right.\)
Vậy..................................................
Ta có: \(x^4-10x^3+25x^2=36\Leftrightarrow x^4-10x^3+25x^2-36=0\Leftrightarrow x^4+x^3-11x^3-11x^2+36x^2-36=0\)
\(\Leftrightarrow x^3\left(x+1\right)-11x^2\left(x+1\right)+36\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3-11x^2+36x-36\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\\x=3\\x=6\end{matrix}\right.\)