K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2017

Dễ mà bạn !!!!

\(x^3+y^3-xy\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)\)

\(=\left(x+y\right)\left[\left(x^2-xy+y^2\right)-xy\right]\)

\(=\left(x+y\right)\left(x^2-2xy+y^2\right)\)

\(=\left(x+y\right)\left(x-y\right)^2\) (đpcm)

28 tháng 8 2016

\(pt\Leftrightarrow7\left(x+y\right)=3\left(x^2-xy+y^2\right)\)

\(\Leftrightarrow3x^2-\left(3y+7\right)x+3y^2-7y=0\)

\(\Delta\text{(}x\text{)}=\left(3y+7\right)^2-4.3\left(3y^2-7y\right)=...\)

Để x nguyên thì Delta phải là số chính phương.

27 tháng 7 2018

Chỗ dấu bằng thứ hai sai nên bạn làm cũng chưa đúng

x^6 -y^6 = (x^2-y^2)(x^4 +x^2 .y^2 + y^4)

Bạn hiểu ra chỗ sai của mình chưa.Chúc bạn học tốt.

27 tháng 7 2018

cho minh xin de

8 tháng 12 2019

A = 3x ( x- 2x + 3) - x2 ( 3x - 2 ) + 5 ( x- x ) 

A = 3x3 - 6x2 + 9x - 3x3 + 2x2 + 5x2 - 5x

A = ( 3x- 3x) - ( 6x2 - 2x2 - 5x) + ( 9x - 5x )

A = x

8 tháng 12 2019

Làm tiếp nhé lúc nãy bị lỗi

A = x2 - 4x

Thay x = 5 vào A ta được

A = 52 - 4 . 5 = 5

a) Ta có: \(VT=\left(x-y-z\right)^2\)

\(=\left(x-y-z\right)\left(x-y-z\right)\)

\(=x^2-xy-xz-yx+y^2+yz-zx+zy+z^2\)

\(=x^2+y^2+z^2-2xy+2yz-2xz\)

=VP(đpcm)

b) Ta có: \(VT=\left(x+y-z\right)^2\)

\(=\left(x+y-z\right)\left(x+y-z\right)\)

\(=x^2+xy-xz+yx+y^2-yz-zx-zy+z^2\)

\(=x^2+y^2+z^2+2xy-2yz-2zx\)

=VP(đpcm)

c) Sửa đề: Chứng minh \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)=x^4-y^4\)

Ta có: \(VT=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)

\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)

\(=x^4-y^4\)

=VP(đpcm)

d) Ta có: \(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)

\(=x^5+y^5\)

=VP(đpcm)

20 tháng 7 2020

a, b, nhân vào là ra à

c, nghe cứ là lạ

d, cũng nhân là ra hà

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5=x^5+y^5\)

12 tháng 8 2020

2) \(43^{2020}+43^{2021}=43^{2020}\left(1+43\right)=43^{2020}.44\)

\(44⋮11\Rightarrow43^{2020}.44⋮11\Rightarrow43^{2020}+43^{2021}⋮11\)

Phần 1 đang nghĩ -.-

12 tháng 8 2020

Cảm ơn bạn

24 tháng 7 2017

\(VT=\left(x+y\right)^2-y^2=\left(x+y-y\right)\left(x+y+y\right)=x\left(x+2y\right)=VP\)

Vậy \(\left(x+y\right)^2-y^2=x\left(x+2y\right)\)

24 tháng 7 2017

\(VT:\left(x+y\right)^2-y^2=\left(x+y-y\right)\left(x+y+y\right)=x\left(x+2y\right)=VP\left(đpcm\right)\)

30 tháng 9 2020

a. Ta có : (x + y)[(x - y)2 + xy]

= (x + y)(x2 - 2xy + y2 + xy)

= (x + y)(x2 - xy + y2)

= x3 + y3 

b. Ta có : x3 + y3 - xy(x + y) 

= x3 + y3 - x2y - xy2

=x2(x - y) + y2(y - x)

= (x - y)(x2 - y2)

= (x - y)2.(x + y) đpcm

c) Ta có (x + y)3 - 3xy(x + y)

= (x + y)[(x + y)2 - 3xy)

= (x + y)(x2 + 2xy + y2 - 3xy)

= (x + y)(x2 - xy + y2) (đpcm)

30 tháng 9 2020

a) VP = ( x + y )( x2 - 2xy + y2 + xy ) = ( x + y )( x2 - xy + y2 ) = x3 + y3 = VT ( đpcm )

b) VP = ( x + y )( x - y )2 = ( x + y )( x2 - 2xy + y2 ) = x3 - 2x2y + xy2 + x2y - 2xy2 + y3 = x3 + y3 - x2y - xy2 = x3 + y3 - xy( x + y ) = VT ( đpcm )

c) VP = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 = x3 + y3 = ( x + y )( x2 - xy + y2 ) = VT ( đpcm )

28 tháng 10 2018

Ta có : (x3+y3)-2(x2-y2)+3(x+y)2

=(x+y)[(x2+xy+y2)-2(x+y)(x-y)+3(x+y)(x+y)]

=(x+y)(x2+xy+y2-2x+2y+3x+3y)

=(x+y)(x2+xy+y2+x+5y) : (x+y) = x2+xy+x+5y

Vậy (x3+y3)-2(x2-y2)+3(x+y)2 : (x+y)= x2+xy+x+5y