Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{5}x-\frac{13}{9}:\left(\frac{131313}{151515}+\frac{131313}{353535}+\frac{131313}{636363}\right)=-10\)
<=> \(\frac{3}{5}x-\frac{13}{9}:\left(\frac{13}{15}+\frac{13}{35}+\frac{13}{63}\right)=-10\)
<=> \(\frac{3}{5}x-\frac{13}{9}:13:\left(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}\right)=-10\)
<=> \(\frac{3}{5}x-\frac{1}{9}:\left(\frac{21}{315}+\frac{9}{315}+\frac{5}{315}\right)=-10\)
<=> \(\frac{3}{5}x-\frac{1}{9}:\frac{35}{315}=-10\)
<=> \(\frac{3}{5}x-\frac{1}{9}:\frac{1}{9}=-10\)
<=> \(\frac{3}{5}x-1=-10\)
<=> \(\frac{3}{5}x=-9\)
<=> \(x=-15\)
Vậy x = -15.
\(\frac{3}{5}x-1\frac{4}{9}:\left(\frac{131313}{151515}+\frac{131313}{353535}+\frac{131313}{636363}\right)=-10\)
\(\Leftrightarrow\frac{3}{5}x-\frac{13}{9}:\left(\frac{13}{15}+\frac{13}{35}+\frac{13}{63}=-10\right)\)
\(\Leftrightarrow\frac{3}{5}x-\frac{13}{9}:\left[\frac{13}{2}\left(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}\right)\right]=-10\)
\(\Leftrightarrow\frac{3}{5}x-\frac{13}{9}:\left[\frac{13}{2}\left(\frac{2}{3.5}+\frac{2}{.57}+\frac{2}{7.9}\right)\right]=-10\)
\(\Leftrightarrow\frac{3}{5}x-\frac{13}{9}:\left[\frac{13}{2}\left(\frac{1}{3}-\frac{1}{9}\right)\right]=-10\)
\(\Leftrightarrow\frac{3}{5}x-\frac{13}{9}:\left(\frac{13}{2}.\frac{2}{9}\right)=-10\)
\(\Leftrightarrow\frac{3}{5}x-\frac{13}{9}:\frac{26}{18}=-10\)
\(\Leftrightarrow\frac{3}{5}x-1=-10\)
\(\Leftrightarrow\frac{3}{5}x=-10+1\)
\(\Leftrightarrow\frac{3}{5}x=-9\)
\(\Rightarrow x=-9:\frac{3}{5}\)
\(\Rightarrow x=-15\)
Vậy \(x=-15\)
(x-1)(x-3) >0
<=> x^2-4x+3>0
<=>x^2-2x2+4-1>0
<=>(x-2)^2>1
<=>x-2>1
<=>x>3
phải cho điều kiện là x,y thuộc Z
xy + 3x - 2y - 7 = 0
x ( y + 3 ) - ( 2y + 6 ) - 1 = 0
x . ( y + 3 ) - 2 . ( y + 3 ) = 1
( x - 2 ) . ( y + 3 ) = 1
\(\Rightarrow\)x - 2, y + 3 thuộc Ư ( 1 ) = { 1 ; -1 }
Sau đó cậu lập bảng tìm x,y
\(A=\left|x-13\right|+\left|x-14\right|+\left|x-15\right|+\left|x-16\right|+\left|x-17\right|-10\)
\(=\left(\left|x-13\right|+\left|x-16\right|\right)+\left(\left|x-14\right|+\left|x-17\right|\right)-10+\left|x-15\right|\)
\(=\left(\left|x-13\right|+\left|16-x\right|\right)+\left(\left|x-14\right|+\left|17-x\right|\right)-10+\left|x-15\right|\)
\(\Rightarrow A\ge\left|x-13+16-x\right|+\left|x-14+17-x\right|-10+\left|x-15\right|\)
\(=\left|3\right|+\left|3\right|-10+\left|x-15\right|\)\(=3+3-10+\left|x-15\right|=-6+\left|x-15\right|\)
Vì \(\left|x-15\right|\ge0\forall x\)\(\Rightarrow A\ge-6\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-13\right)\left(16-x\right)\ge0\\\left(x-14\right)\left(17-x\right)\ge0\\x-15=0\end{cases}}\Leftrightarrow\hept{\begin{cases}13\le x\le16\\14\le x\le17\\x=15\end{cases}}\Leftrightarrow x=15\)
Vậy \(minA=-6\Leftrightarrow x=15\)
a) Ta có:
f(0) = -2.03 + 3.02 - 0 + 5 = 0 + 0 - 0 + 5 = 5
g(-1) = 2.(-1)3 - 2.(-1)2 + (-1) - 9 = -2 - 2 - 1 - 9 = -14
b) f(x) + g(x) = (-2x3 + 3x2 - x + 5) + (2x3 - 2x2 + x - 9)
= -2x3 + 3x2 - x + 5 + 2x3 - 2x2 + x - 9
= (-2x3 + 2x3) + (3x2 - 2x2) - (x - x) + (5 - 9)
= x2 - 4
f(x) - g(x) = (-2x3 + 3x2 - x + 5) - (2x3 - 2x2 + x - 9)
= -2x3 + 3x2 - x + 5 - 2x3 + 2x2 - x + 9
= -(2x3 + 2x3) + (3x2 + 2x2) - (x + x) + (5 + 9)
= -4x3 + 5x2 - 2x + 14