Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=-\dfrac{21}{7}=-3\)
⇒ x = - 6 và y = 15
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{21}{7}=3\)
Do đó:x=6; y=-15
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\\x-2=y-4\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\\x-y=-4+2\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\\x-y=-2\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x-y}{2-5}=\frac{-2}{-3}=\frac{2}{3}\)
=> \(\hept{\begin{cases}x=\frac{2}{3}\cdot2=\frac{4}{3}\\y=\frac{2}{3}\cdot5=\frac{10}{3}\end{cases}}\)
Câu 1
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{16}{8}=2\)
=>x=2.3=6
y=2.5=10
Vậy x=6 và y=10
Câu 2:
x:2=y:(-5) <=> \(\frac{x}{2}=\frac{y}{-5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{2+5}=\frac{-7}{7}=-1\)
=>x=(-1).2=-2
y=(-1).(-5)=5
Vậy x=-2 và y=5
áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{3}=\frac{y}{5}\)
\(=\frac{x+y}{3+5}\)
thay x+y=16 vào được
\(\frac{x}{3}=\frac{y}{5}\)
\(=\frac{x+y}{3+5}\)
=\(\frac{16}{8}\)
=2
=>x=2.3=6
y=2.5=10
áp dụng tính chất dãy tỉ số bằng nhau
b.\(\frac{x}{2}=\frac{y}{-5}\)
\(=\frac{x-y}{2-\left(-5\right)}\)
\(thayx-y=-7\)
\(\frac{x}{2}=\frac{y}{-5}\)
\(=\frac{x-y}{2-\left(-5\right)}\)
\(=\frac{-7}{7}\)
\(=-1\)
\(=>x=\left(-1\right).2=\left(-2\right)\)
\(y=\left(-1\right).\left(-5\right)=5\)