K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2018

Sai đề rồi bạn

Ý bạn là : \(x^2-y^2+z^2=180\)

Theo tính chất của dãy tỉ số bằng  nhau  ta có

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x^2}{2^2}=\frac{y^2}{3^2}=\frac{z^2}{4^2}=\frac{x^2-y^2+z^2}{2^2-3^2+4^2}=\frac{180}{11}\approx16,4\)

\(\cdot x=16,4.2=32,8\)

\(y=16,4.3=49,2\)

\(z=16,4.4=65,6\)

15 tháng 8 2016

Anh giúp luôn !

\(\frac{x}{3}=\frac{y}{2}=\frac{z}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{4}=\frac{z^2}{16}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{9}=\frac{y^2}{4}=\frac{z^2}{16}=\frac{y^2-x^2+2z^2}{9-4+2\times16}=\frac{108}{27}=4\)

\(\Rightarrow x=6hayx=-6\)

\(\Rightarrow y=4hayy=-4\)

\(\Rightarrow z=8hayz=-8\)

NM
8 tháng 11 2021

1. áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x+2}{3}=\frac{y-7}{5}=\frac{x+y-5}{3+5}=\frac{16}{8}=2\Rightarrow\hept{\begin{cases}x+2=6\\y-7=10\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=17\end{cases}}}\)

2. áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x+5}{2}=\frac{y-2}{3}=\frac{x+5-y+2}{2-3}=\frac{-10+7}{-1}=3\Rightarrow\hept{\begin{cases}x+5=6\\y-2=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=11\end{cases}}\)

16 tháng 10 2018

Ta có : \(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)

\(\Rightarrow\left(\frac{x}{5}\right)^2=\left(\frac{y}{7}\right)^2=\left(\frac{z}{3}\right)^2=\frac{x^2}{5^2}=\frac{y^2}{7^2}=\frac{z^2}{3^2}\)\(=\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)

\(\Rightarrow x=9.5=45\)

     \(y=9.7=63\)

     \(z=9.3=27\)

18 tháng 8 2018

1. thiếu đề

2.

\(x:y:z=1:2:4\Rightarrow\frac{x}{1}=\frac{y}{2}=\frac{z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{x+z}{1+3}=\frac{-15}{4}\)

Đến đây bạn tự làm tiếp đc...

3. 

\(\frac{x}{y}=\frac{2}{5}\Rightarrow\frac{x}{2}=\frac{y}{5}\)

Áp dụng tính chất rồi làm tiếp

4. 

\(3x=7y\Rightarrow\frac{x}{7}=\frac{y}{3}\)

Đến đây dễ rồi

18 tháng 8 2018

Cảm ơn Bonking

14 tháng 7 2019

Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) => \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

   \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}=\frac{x^2+y^2-2z^2}{4+9-32}=\frac{76}{-19}=-4\)

=> \(\hept{\begin{cases}\frac{x^2}{4}=-4\\\frac{y^2}{9}=-4\\\frac{2z^2}{32}=-4\end{cases}}\) => \(\hept{\begin{cases}x^2=-4.4=-16\\y^2=-4.9=-36\\z^2=\left(-4.32\right):2=-64\end{cases}}\) => ko có giá trị x,y,z thõa mãn

Ta có: \(-2x=5y\) => \(\frac{x}{5}=\frac{y}{-2}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

        \(\frac{x}{5}=\frac{y}{-2}=\frac{x+y}{5-2}=\frac{30}{3}=10\)

=> \(\hept{\begin{cases}\frac{x}{5}=10\\\frac{y}{-2}=10\end{cases}}\) => \(\hept{\begin{cases}x=10.5=50\\y=10.\left(-2\right)=-20\end{cases}}\)

Vậy ..

14 tháng 7 2019

\(\frac{x}{-3}=\frac{y}{-7}\Rightarrow\frac{2x}{-6}=\frac{4y}{-28}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{-6}=\frac{4y}{-28}=\frac{2x+4y}{(-6)+(-28)}=\frac{68}{-34}=-2\)

Vậy : \(\hept{\begin{cases}\frac{x}{-3}=-2\\\frac{y}{-7}=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=14\end{cases}}\)