K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có 

\(x^2+y^2+z^2\)\(=200\)

\(2xy-yz-zx=M\)

\(\Leftrightarrow M+200=x^2+y^2+z^2+2xy-yz-zx\)

\(\Leftrightarrow M+200=\left(x+y\right)^2-z\left(x+y\right)+z^2\)

\(\Leftrightarrow\left(x+y-\frac{z}{2}\right)^2+\frac{3}{4}z^2\ge0\)

\(\Leftrightarrow M\ge-200\)

19 tháng 9 2021

\(\left(x^3+3x^2y+3xy^2+y^3-z^3\right):\left(x+y-z\right)\\ =\left[\left(x+y\right)^3-z^3\right]:\left(x+y-z\right)\\ =\left(x+y-z\right)\left[\left(x+y\right)^2+z\left(x+y\right)+z^2\right]:\left(x+y-z\right)\\ =x^2+2xy+y^2+xz+yz+z^2\)

Vậy chọn A 

19 tháng 9 2021

Cảm ơn

 

12 tháng 10 2021

a+b+c=3 nha (quên bổ sung)

AH
Akai Haruma
Giáo viên
13 tháng 10 2021

Bài 1:

$a^2+b^2+c^2=ab+bc+ac$
$\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$

$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$

Vì $(a-b)^2, (b-c)^2, (c-a)^2\geq 0$ với mọi $a,b,c$

Do đó để tổng của chúng bằng $0$ thì $a-b=b-c=c-a=0$

$\Leftrightarrow a=b=c$

Mà $a+b+c=3$ nên $a=b=c=1$

$\Rightarrow Q=(1+1)^2+(1+2)^3+(1+3)^3=95$

24 tháng 8 2016

thieu de ak

24 tháng 8 2016

ko

20 tháng 3 2017

Áp dụng BĐT AM-GM ta có:

\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)

\(y^2+z^2\ge2\sqrt{y^2z^2}=2yz\)

\(z^2+x^2\ge2\sqrt{z^2x^2}=2zx\)

\(x^2+1\ge2\sqrt{x^2}=2x\)

\(y^2+1\ge2\sqrt{y^2}=2y\)

\(z^2+1\ge2\sqrt{z^2}=2z\)

Cộng theo vế các BĐT trên ta có:

\(3\left(x^2+y^2+z^2+1\right)\ge2\left(xy+yz+xz+x+y+z\right)\)

\(\Leftrightarrow3\left(x^2+y^2+z^2+1\right)\ge2\cdot6=12\left(xy+yz+xz+x+y+z=6\right)\)

\(\Leftrightarrow x^2+y^2+z^2+1\ge4\Leftrightarrow P\ge3\)

Đẳng thức xảy ra khi \(x=y=z=1\)

Vậy \(P_{Min}=3\) khi \(x=y=z=1\)

20 tháng 3 2017

kq là 3 BĐT

30 tháng 8 2021

thêm x2+y2+z2=1 nha

thêm x2 + y+ z= 1 nha

      HT nha vinh