Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(x^2+y^2+z^2\)\(=200\)
\(2xy-yz-zx=M\)
\(\Leftrightarrow M+200=x^2+y^2+z^2+2xy-yz-zx\)
\(\Leftrightarrow M+200=\left(x+y\right)^2-z\left(x+y\right)+z^2\)
\(\Leftrightarrow\left(x+y-\frac{z}{2}\right)^2+\frac{3}{4}z^2\ge0\)
\(\Leftrightarrow M\ge-200\)
\(\left(x^3+3x^2y+3xy^2+y^3-z^3\right):\left(x+y-z\right)\\ =\left[\left(x+y\right)^3-z^3\right]:\left(x+y-z\right)\\ =\left(x+y-z\right)\left[\left(x+y\right)^2+z\left(x+y\right)+z^2\right]:\left(x+y-z\right)\\ =x^2+2xy+y^2+xz+yz+z^2\)
Vậy chọn A
Bài 1:
$a^2+b^2+c^2=ab+bc+ac$
$\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$
$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
Vì $(a-b)^2, (b-c)^2, (c-a)^2\geq 0$ với mọi $a,b,c$
Do đó để tổng của chúng bằng $0$ thì $a-b=b-c=c-a=0$
$\Leftrightarrow a=b=c$
Mà $a+b+c=3$ nên $a=b=c=1$
$\Rightarrow Q=(1+1)^2+(1+2)^3+(1+3)^3=95$
Áp dụng BĐT AM-GM ta có:
\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)
\(y^2+z^2\ge2\sqrt{y^2z^2}=2yz\)
\(z^2+x^2\ge2\sqrt{z^2x^2}=2zx\)
\(x^2+1\ge2\sqrt{x^2}=2x\)
\(y^2+1\ge2\sqrt{y^2}=2y\)
\(z^2+1\ge2\sqrt{z^2}=2z\)
Cộng theo vế các BĐT trên ta có:
\(3\left(x^2+y^2+z^2+1\right)\ge2\left(xy+yz+xz+x+y+z\right)\)
\(\Leftrightarrow3\left(x^2+y^2+z^2+1\right)\ge2\cdot6=12\left(xy+yz+xz+x+y+z=6\right)\)
\(\Leftrightarrow x^2+y^2+z^2+1\ge4\Leftrightarrow P\ge3\)
Đẳng thức xảy ra khi \(x=y=z=1\)
Vậy \(P_{Min}=3\) khi \(x=y=z=1\)
thêm x2 + y2 + z2 = 1 nha
HT nha vinh