Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co pt \(\Leftrightarrow x^2-4x+4+y^2+6y+9=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y+3\right)^2=0\)
mà \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}}\)
Nên dấu \(=\)xảy ra khi \(\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)
Vậy \(x=2;y=-3\)
\(^{x^2-4x+4+y^2+6y+9=0}\)0
\(\left(x-2\right)^2+\left(y+3\right)^2=0\)
x=2 va y=-3
\(x^2+y^2-4x+6y+13=0\)
\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y+3\right)^3=0\)
Vì: \(\left(x-2\right)^2+\left(y+3\right)^3\ge0\forall x;y\)
=> ''='' xảy ra khi x = 2; y = -3
Vậy.........
Lời giải:
\(x^2+y^2-4x+6y+13=0\)
\(\Leftrightarrow (x^2-4x+4)+(y^2+6y+9)=0\)
\(\Leftrightarrow (x-2)^2+(y+3)^2=0\)
Vì \((x-2)^2; (y+3)^2\ge 0, \forall x,y\Rightarrow (x-2)^2+(y+3)^2\geq 0\)
Dấu "=" xảy ra khi \((x-2)^2=(y+3)^2=0\Leftrightarrow \left\{\begin{matrix} x=2\\ y=-3\end{matrix}\right.\)
\(x^2+y^2-4x+6y+13=0\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y+3\right)^2=0\)
Mà ta lại có: \(\left(x-2\right)^2+\left(y+3\right)^2\ge0\left(\forall x;y\right)\)
\(\Rightarrow\left(x-2\right)^2=0;\left(y+3\right)^2=0\Leftrightarrow x=2;y=-3\)
x2 + y2 - 4x + 6y + 13 = 0
=> x2+y2-4x+6y+9+4=0
=> (x2-4x+4)+(y2+6y+9)=0
=> (x-2)2+(y+3)2=0
=> \(\left[{}\begin{matrix}x-2=0\\y+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
vậy x=2,y=-3
2 a) x2 + 4x + 5
= x2 + 2.x.2 + 22 + 1
=(x + 2)2 +1
vì (x + 2)2 lớn hơn hoặc bằng 0 với mọi x
suy ra A luôn lớn hơn hoặc bằng 1
dấu '=' xảy ra khi x+2=0 suy ra x=-2
vậy GTNN của A là 1 khi x= -2
b)x2 + y2 - 4x +6y +13=0
(x2 - 4x +4)+(y2 + 6y +9)=0
(x-2)2 + (y+3)2 =0
vì (x - 2)2 lớn hơn hoặc bằng 0 với mọi x
(y+3)2 lớn hơn hoặc bằng 0 với mọi y
nên để (x-2)2 + (y+3)2 =0
thì x-2=0 và y+3=0
x=2; y= -3
a) x^2 + 2x - 35 = 0
<=> (x - 5)(x + 7) = 0
<=> x = 5 hoặc x = - 7
b) 4x^2 - 12x - 27 = 0
<=> (2x - 9)(2x + 3) = 0
<=> x = 4,5 hoặc x = - 1,5
c) 9x^2 + 24x + 7 = 0
<=> (3x + 1)(3x + 7) = 0
<=> x = - 1/3 hoặc x = - 7/3
d) x^2 + y^2 - 4x + 6y + 13 = 0
<=> (x - 2)^2 + (y + 3)^2 = 0
<=> x = 2 và y = - 3
e) 25x^2 - 10x - 24 = 0
<=> (5x - 6)(5x + 4) = 0
<=> x = 1,2 hoặc x = - 0,8
x2+y2-4x+6y+13=0
(x2-4x+4)+(y2+6y+9)=0
(x-2)2+(y+3)2=0
suy ra x-2=0 hoặc y+3=0
*x-2=0=>x=2 *y+3 =0=> y=-3
vậy x=2,y=-3