Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<>?/[;b[]rwel;u];53pjkjnlgkljtreylkeuro;uwqr[i5uiwehhwwejokejoiyufljukneghnmknbfvhdbg.elkgiwr;iewqirluoyeiwhtgo
Đặt \(x^{2\:}-2x+2=t\)
Được phương trình: \(\frac{t}{t+1}+\frac{t-1}{t}=\frac{1}{6}\)
Quy đồng và khử mẫu được: \(12t^2-6=t^2+t\)
<=> \(11t^2-t=6\)
r á. đến đó thỳ hk lm đk n~. pn xem lại đề đy na @@
2: \(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
\(=\left(x^2+x+1\right)\left(x^2+x+1+1\right)-12\)
Đặt \(x^2+x+1=a\)ta có
\(a\left(a+1\right)-12=a^2+a-12=a^2+4a-3a-12=a\left(a+4\right)-3\left(a+4\right)=\left(a+4\right)\left(a-3\right)\)
Thay \(a=x^2+x+1\)ta được
\(\left(x^2+x+5\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+5\right)\left(x^2+2x-x-2\right)=\left(x^2+x+5\right)\left[x\left(x+2\right)-\left(x+2\right)\right]=\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)Kl...
3. \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+7+8\right)+15\)
Đặt \(x^2+8x+7=a\) Ta có
\(a\left(a+8\right)+15=a^2+8a+15=a^2+5a+3a+15=a\left(a+5\right)+3\left(a+5\right)=\left(a+5\right)\left(a+3\right)\)
Thay \(a=x^2+8x+15\)ta được
\(\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)
\(=\left(x^2+6x+2x+12\right)\left(x^2+8x+10\right)\)
\(=\left(x+6\right)\left(x+2\right)\left(x^2+8x+10\right)\)
`(x+1)(x+3)=2x^2-2`
`<=>x^2+x+3x+3=2x^2-2`
`<=>x^2-4x-5=0`
`<=>x^2-5x+x-5=0`
`<=>x(x-5)+(x-5)=0`
`<=>(x-5)(x+1)=0`
`<=>` $\left[ \begin{array}{l}x=5\\x=-1\end{array} \right.$
Vậy `S={5,-1}`
Ta có: \(\left(x+1\right)\left(x+3\right)=2x^2-2\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-2x^2+2=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-2\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-2\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[x+3-2\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3-2x+2\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(5-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\5-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)
Vậy: S={-3;5}
a) (x + 2) . (x + 3) - (x - 2) . (x + 5) = 6
=> (x . x + 3x + 2x + 2 . 3) - (x . x + 5x - 2x - 2 . 5) = 6
=> (x2 + 5x + 6) - (x2 + 3x - 10) = 6
=> x2 + 5x + 6 - x2 - 3x + 10 = 6
=> 2x +16 = 6 => 2x = -10 => x = -5
b) (3x + 2) . (2x + 9) - (x + 2) . (6x + 1) = (x + 1) - (x - 6)
=> (3x . 2x + 3x . 9 + 2 . 2x + 2 . 9) - (x . 6x + 1x + 2 . 6x + 2 .1) = x + 1 - x + 6
=> (6x2 + 31x + 18) - (6x2 + 13x + 2) = 7
=> 6x2 + 31x + 18 - 6x2 - 13x - 2 = 7
=> 18x + 16 = 7 => 18x = 9 => x = 0,5
c) 3 . (2x - 1) . (3x - 1) - (2x - 3) . (9x - 1) = 0
=> 3(2x . 3x - 2x -3x + 1) - (2x . 9x - 2x -3 . 9x + 3) = 0
=> 3(6x2 - 5x +1) - (18x2 - 29x + 3) = 0
=> (18x2 -15x + 1) -(18x2 - 29x +3) = 0
=> 18x2 - 15x +1 -18x2 + 29x - 3 = 0
=> 14x = 0 => x = 0