Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\left(x+3\right)\left(x+4\right)\left(x+5\right)\left(x+6\right)+1\)
\(=\left(x^2+9x+18\right)\left(x^2+9x+20\right)+1\)
\(=\left(x^2+9x\right)^2+38\left(x^2+9x\right)+360+1\)
\(=\left(x^2+9x\right)^2+2\cdot\left(x^2+9x\right)\cdot19+19^2\)
\(=\left(x^2+9x+19\right)^2\)
b. \(x^2+y^2+2x+2y+2\left(x+1\right)\left(y+1\right)+2\)
\(=\left(x^2+2x+1\right)+2\left(x+1\right)\left(y+1\right)+\left(y^2+2y+1\right)\)
\(=\left(x+1\right)^2+2\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\)
\(=\left(x+1+y+1\right)^2=\left(x+y+2\right)^2\)
c. \(x^2-2x\left(y+2\right)+y^2+4y+4\)
\(=x^2-2x\left(y+2\right)+\left(y+2\right)^2\)
\(=\left(x-y-2\right)^2\)
d. \(x^2+2x\left(y+1\right)+y^2+2y+1\)
\(=x^2+2x\left(y+1\right)+\left(y+1\right)^2\)
\(=\left(x+y+1\right)^2\)
a: Ta có: \(\left(x^2+x-1\right)^2-\left(x^2+2x+3\right)^2\)
\(=\left(x^2+x-1-x^2-2x-3\right)\left(x^2+x-1+x^2+2x+3\right)\)
\(=\left(-x-4\right)\left(2x^2+3x+2\right)\)
b: Ta có: \(\left(x-3\right)^2-16\)
\(=\left(x-3-4\right)\left(x-3+4\right)\)
\(=\left(x+1\right)\left(x-7\right)\)
c: \(y^2+16y+64=\left(y+8\right)^2\)
Đề bài không chính xác, biểu thức này không viết được dưới dạnh tích
Vì cả 2 số hạng đều là số chính phương, ta phân tích nhân tử bằng cách sử dụng công thức hiệu của 2 bình phương:\(a^2-b^2=\left(a+b\right)\left(a-b\right)\) trong đó: \(a=x^2+x-1\)và \(b=x^2+2x+3\)
\(\Rightarrow\left(2x^2+3x+2\right)\left(x+4\right)\)
1.a) xy + 2y - x2 + 4
= y ( x + 2 ) - ( x2 - 4 ) = y ( x + 2 ) - ( x - 2 ) ( x + 2 ) = ( x + 2 )( y - x + 2 )
b) 2x2 + y2 + 3xy
= ( 2x2 + 2xy ) + ( y2 + xy )
= 2x ( x + y ) + y ( x + y )
= ( x + y ) ( 2x + y )
2.
x - y = 5 \(\Rightarrow\)( x - y )2 = 25 \(\Rightarrow\)x2 + y2 = 25 + 2xy = 25 + 2.3 = 31
A = ( x + y )2 = x2 + y2 + 2xy = 31 + 6 = 37
\(a,=\left(x+1\right)^2\\ b,=\left(3x-y\right)^2\\ c,=\left(x-3\right)\left(x+3\right)\\ d,=\left(x+4\right)^3\\ e,=\left(x-2\right)^3\\ f,=\left(x+2\right)\left(x^2-2x+4\right)\\ g,=\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)