K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2021

`tan (1/2) ≈ 26^o 33'`

22 tháng 6 2018

Ta có: \(\hept{\begin{cases}\left(\frac{1}{x}+y\right)+\left(\frac{1}{x}-y\right)=\frac{5}{8}\\\left(\frac{1}{x}+y\right)-\left(\frac{1}{x}-y\right)=-\frac{3}{8}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{x}=\frac{5}{8}\\2y=-\frac{3}{8}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{16}{5}\\y=-\frac{3}{16}\end{cases}}}\)

NV
5 tháng 4 2019

Vấn đề lớn nhất là không dịch được đề của bạn, nhìn chẳng khác gì mật mã cả

19 tháng 7 2018

\(a,\) Ta có:

Δ' \(=m^2-m+2=\left(m-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0 \)\(m\)

Vậy phương trình luôn có 2 nghiệm phân biệt với mọi \(m\)

28 tháng 6 2021

Giúp em giải với huhu 

b: \(\sqrt{8-2\sqrt{15}}-\sqrt{5}\)

\(=\sqrt{5}-\sqrt{3}-\sqrt{5}\)

\(=-\sqrt{3}\)

c: \(\sqrt{11-6\sqrt{2}}=3-\sqrt{2}\)

d: \(\sqrt{5-2\sqrt{6}}=\sqrt{3}-\sqrt{2}\)

NV
7 tháng 2 2022

\(\Delta'=4-\left(m+1\right)\ge0\Rightarrow m\le3\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m+1\end{matrix}\right.\)

\(x_1^2+x_2^2=5\left(x_1+x_2\right)\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=5\left(x_1+x_2\right)\)

\(\Leftrightarrow16-2\left(m+1\right)=20\)

\(\Leftrightarrow m=-3\) (thỏa mãn)

7 tháng 2 2022

a. Ta có: \(x^2-4x+m+1=0\)

Thay m=2 ta được: \(x^2-4x+2+1=0\Leftrightarrow x^2-4x+3=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

b. Để phương trình có 2 nghiệm phân biệt thì \(\Delta=\left(-4\right)^2-4.1.\left(m+1\right)>0\)

\(\Leftrightarrow16-4\left(m+1\right)>0\Leftrightarrow16>4\left(m+1\right)\Leftrightarrow4>m+1\Leftrightarrow m< 3\)

Áp dụng định lí Vi-et ta có: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m+1\end{matrix}\right.\)

Theo đề ta có: \(x_1^2+x_2^2=5\left(x_1+x_2\right)\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=5\left(x_1+x_2\right)\)

\(\Leftrightarrow\left(4\right)^2-2\left(m+1\right)=5.4\)

\(\Leftrightarrow16-2m-2=20\Leftrightarrow m=-3\) (TM)