Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=x^2+2x+2xy+2y^2+4y+2021$
$=(x^2+2xy+y^2)+2x+y^2+4y+2021$
$=(x+y)^2+2(x+y)+1+(y^2+2y+1)+2019$
$=(x+y+1)^2+(y+1)^2+2019\geq 2019$
Vậy $A_{\min}=2019$ khi $x+y+1=y+1=0$
$\Leftrightarrow (x,y)=(0,-1)$
Đặt `A=2x^2+2y^2+2xy-4x+4y+2021`
`<=>2A=4x^2+4y^2+4xy-8x+8y+4042`
`<=>2A=4x^2+4xy+y^2-8x-4y+3y^2+12y+4042`
`<=>2A=(2x+y)^2-4(2x+y)+4+3y^2+12y+12+4026`
`<=>2A=(2x+y-2)^2+3(y+2)^2+4026>=4026`
`=>A>=2013`
Dấu "=" xảy ra khi `y=-2,x=(2-y)/2=2`
D ez nhất :v
\(D=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+5\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+5\ge5\)
Đẳng thức xảy ra khi x = 1 và y = -2
\(A=\left[\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4\right]+\left(y^2-2y+1\right)+2020\)
\(=\left[\left(x-y\right)^2+2\left(x-y\right).2+2^2\right]+\left(y-1\right)^2+2020\)
\(=\left(x-y+2\right)^2+\left(y-1\right)^2+2020\ge2020\)
Dấu "=" xảy ra khi y = 1 và x - y + 2 = 0 tức là x = y - 2 = -1
câu a hình như sai, đúng ra phải là 2x^2 chứ nhỉ, theo đề tính ra thì thừa 2x
câu b nhỏ nhất = 2014, cần cách làm ko z
a)\(M=x^2-2xy+2y^2-4y+2016\)
\(=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+2012\)
\(=\left(x-y\right)^2+\left(y-2\right)^2+2012\ge2012\)
Dấu = khi \(\begin{cases}\left(x-y\right)^2=0\\\left(y-2\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x-y=0\\y-2=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=y\\y=2\end{cases}\)\(\Leftrightarrow x=y=2\)
Vậy MinM=2012 khi x=y=2
b)\(N=x^2-2xy+2x+2y^2-4y+2016\)
\(=\left(x^2-2xy+2x+y^2-2y+1\right)+\left(y^2-2y+1\right)+2014\)
\(=\left(x-y+1\right)^2+\left(y-1\right)^2+2014\ge2014\)
Dấu = khi \(\begin{cases}\left(x-y+1\right)^2=0\\\left(y-1\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x-y+1=0\\y-1=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x-y+1=0\\y=1\end{cases}\)\(\Leftrightarrow\begin{cases}x-1+1=0\\y=1\end{cases}\)\(\Leftrightarrow\begin{cases}x=0\\y=1\end{cases}\)
Vậy MinN=2014 khi x=0;y=1
Đề bài yêu cầu gì?