Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|3x-2018\right|+\left|x-2017\right|=\left|2x-1\right|\)
\(\Rightarrow\orbr{\begin{cases}3x-2018+x-2017=2x-1\\-\left(3x-2018\right)+\left[-\left(x-2017\right)\right]=2x-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}4x-4035=2x-1\\\left(-3x-x\right)+\left(2018+2017\right)=2x-1\end{cases}}\)
Làm tiếp
TH2:
\(\left|3x-2018\right|+\left|x-2017\right|=\left|2x-1\right|\)
\(\Rightarrow\orbr{\begin{cases}3x-2018+x-2017=-2x+1\\-\left(3x-2018\right)+\left[-\left(x-2017\right)\right]=-2x+1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}4x-4035=-2x+1\\\left(-3x-x\right)+\left(2018+2017\right)=-2x+1\end{cases}}\)
Tự tiếp tiếp nha bạn
Bài sau cũng tg tự vậy mà làm
\(\left(x+1\right)^6+\left(y-1\right)^4=-z^2\)
\(\Rightarrow\left(x+1\right)^6+\left(y-1\right)^4+z^2=0\)
Ta có: \(\hept{\begin{cases}\left(x+1\right)^6\ge0\\\left(y-1\right)^4\ge0\\z^2\ge0\end{cases}}\Rightarrow\left(x+1\right)^6+\left(y-1\right)^4+z^2\ge0\)
Mà \(\left(x+1\right)^6+\left(y-1\right)^4+z^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(x+1\right)^6=0\\\left(y-1\right)^4=0\\z^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\\z=0\end{cases}}\)
Thay x = -1, y = 1, z = 0 vào P
\(\Rightarrow P=2018.\left(-1\right)^{2016}.1^{2017}-\left(0-1\right)^{2018}\)
\(=2018-1=2017\)
Vậy...
x=2016 =>x-1=2015
Suy ra: \(C=x^{2010}-2015x^{2009}-2015x^{2008}-...-2015x+1\)
\(=x^{2010}-\left(x-1\right).x^{2009}-\left(x-1\right).x^{2008}-...-\left(x-1\right).x+1\)
\(=x^{2010}-x^{2010}+x^{2009}-x^{2009}+x^{2008}-...-x^2+x+1\)
\(=x+1=2016+1=2017\)
f(2016)=20168 - 2017*20167 +2017*20166 - 2017*20165 +...+2017*20162 - 2017*2016+ 2018
=20168 -( 20168 + 2016) + (20167+2016) - (20166 + 2016)+....+20163+2016 -( 20162 + 2016)+2018
=2018
Thay x=2016 thì 2017=x+1 và 2018=x+2 Do đó
\(f\left(x\right)=x^8-\left(x+1\right)x^7+\left(x+1\right)x^6-...-\left(x+1\right)x\)\(+x+2\)
\(=x^8-x^8-x^7+x^7+x^6-...+x^2-x^2-x+x+2\)
\(=2\)
\(x^{2018}+2x^{2017}+3x^{2016}+...+2017x+2018\)
\(=1+2+3+...+2017+2018\)
\(=\frac{2018.\left(2018+1\right)}{2}=2037171\)