K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 4 2019

\(ac=-2\left(m^2+8\right)< 0\Rightarrow\) pt luôn có 2 nghiệm pbn trái dấu

Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-2\left(m^2+8\right)\end{matrix}\right.\)

\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(A=m^2+4\left(m^2+8\right)=5m^2+32\ge32\)

\(\Rightarrow A_{min}=32\) khi \(m=0\)

4 tháng 12 2018

Đáp án D

Phương pháp:

Đặt 2x = t, t > 0. Chuyển về bài toán tìm m để phương trình bậc 2 ẩn t có 2 nghiệm t1, t2 thỏa mãn t1.t2 = 8

Cách giải:


Để phương trình (1) có 2 nghiệm x1, x2 thỏa mãn x1 + x2 = 3 thì phương trình (2) có 2 nghiệm t1,t2 thỏa mãn t1.t2 = 2x1.2x2 = 2x1 + x2 = 23 = 8

Khi đó:

4 tháng 5 2018

Đáp án A

 

Ghi nhớ: Nếu hàm số

liên tục trên đoạn thì phương trình

có ít nhất một nghiệm nằm trong khoảng .

7 tháng 11 2018

30 tháng 7 2019

8 tháng 10 2017

NV
30 tháng 8 2021

\(2021^x=t>0\Rightarrow t^2-22t+2021-m=0\)

Pt có 2 nghiệm nên (1) có 2 nghiệm dương \(\Rightarrow\left\{{}\begin{matrix}\Delta'=121-\left(2021-m\right)\ge0\\t_1+t_2=22>0\\t_1t_2=2021-m>0\end{matrix}\right.\) (1)

\(x=log_{2021}t\Rightarrow x_1+x_2=log_{2021}t_1+log_{2021}t_2=log_{2021}\left(t_1t_2\right)\)

\(\Rightarrow log_{2021}\left(t_1t_2\right)\ge\dfrac{1}{2}\Rightarrow t_1t_2\ge\sqrt{2021}\)

\(\Rightarrow2021-m\ge\sqrt{2021}\) (2)

(1);(2) \(\Rightarrow m\)

7 tháng 5 2018

Chọn A

5 tháng 5 2019

30 tháng 6 2019

Đáp án D.

Đặt t = log3 x => t2 – 3t + 2m – 7 = 0

PT có 2 nghiệm khi  ∆ = 9 - 4 2 m - 7 = 37 - 8 m > 0

=> PT có 2 nghiệm t1; t2

⇒ log 3   x 1 = t 1 log 3   x 2 = t 2 ⇒ x 1 = 3 t 1 x 2 = 3 t 2

Khi đó theo định lý Viet ta có: 

t 1 + t 2 = 3 t 1 . t 2 = 2 m - 7

Do

Đặt