Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-4x+y^2-6y+15=2\)
\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2-9y+9\right)+2=2\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y-3\right)^2=0\)
Vì \(\left(x-2\right)^2\ge0;\left(y-3\right)^2\ge0\)
Mà \(\left(x-2\right)^2+\left(y-3\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y-3\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
Vậy (x;y) = (2;3)
\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2-6y+9\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y-3\right)^2=0\)
Do \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left(y-3\right)^2\ge0\end{matrix}\right.\) ;\(\forall x;y\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2\ge0\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x-2=0\\y-3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
\(x^2-4x+y^2-6x+15=2\)
\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2-6x+9\right)-4-9+15-2=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y-3\right)^2=0\)
Lại có :
\(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left(y-3\right)^2\ge0\end{matrix}\right.\) \(\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow x=2;y=3\)
\(4x^2+4x+y^2-6y=24\)
\(\Leftrightarrow\left(4x^2+4x+1\right)+\left(y^2-6y+9\right)=34\)
\(\Leftrightarrow\left(2x+1\right)^2+\left(y-3\right)^2=34=3^2+5^2\)
\(TH1:\hept{\begin{cases}\left(2x+1\right)^2=3^2\\\left(y-3\right)^2=5^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=8\end{cases}}\)
\(TH2:\hept{\begin{cases}\left(2x+1\right)^2=5^2\\\left(y-3\right)^2=3^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\end{cases}}\)
Vay.....
\(4x^2+4x+y^2-6y=24\)
\(\Leftrightarrow4x^2+4x+y^2-6y-24=0\)
\(\Leftrightarrow\left(4x^2+4x+1\right)+\left(y^2-6y+9\right)-34=0\)
\(\Leftrightarrow\left(2x+1\right)^2+\left(y-3\right)^2=34\)
Mà \(34=3^2+5^2=\left(-3\right)^2+\left(-5\right)^2\)
Vì là nghiệm nguyên dương nên:
\(\left(2x+1\right)^2+\left(y-3\right)^2=3^2+5^2\)\(\Rightarrow\hept{\begin{cases}\orbr{\begin{cases}\\\end{cases}}\\\orbr{\begin{cases}\\\end{cases}}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x+1=3\\y-3=5\end{cases}}\)hoặc \(\orbr{\begin{cases}2x+1=5\\y-3=3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=2\\y=8\end{cases}}\) hoặc \(\orbr{\begin{cases}2x=4\\y=6\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\y=8\end{cases}}\) hoặc \(\orbr{\begin{cases}x=2\\y=6\end{cases}}\)
Vậy các cặp số (x;y) là: (1;8);(2;6)
\(x^2+3y^2-4x+6y+7=0\\ \Leftrightarrow\left(x^2-4x+4\right)+\left(3y^2+6y+3\right)=0\\ \Leftrightarrow\left(x-2\right)^2+3\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
\(3x^2+y^2+10x-2xy+26=0\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+\left(2x^2+10x+\dfrac{25}{8}\right)+\dfrac{183}{8}=0\\ \Leftrightarrow\left(x-y\right)^2+2\left(x^2+2\cdot\dfrac{5}{2}x+\dfrac{25}{4}\right)+\dfrac{183}{8}=0\\ \Leftrightarrow\left(x-y\right)^2+2\left(x+\dfrac{5}{2}\right)^2+\dfrac{183}{8}=0\\ \Leftrightarrow x,y\in\varnothing\)
Sửa đề: \(3x^2+6y^2-12x-20y+40=0\)
\(\Leftrightarrow\left(3x^2-12x+12\right)+\left(6y^2-20y+\dfrac{50}{3}\right)+\dfrac{34}{3}=0\\ \Leftrightarrow3\left(x-2\right)^2+6\left(y^2-2\cdot\dfrac{5}{3}y+\dfrac{25}{9}\right)+\dfrac{34}{3}=0\\ \Leftrightarrow3\left(x-2\right)^2+6\left(y-\dfrac{5}{3}\right)^2+\dfrac{34}{3}=0\\ \Leftrightarrow x,y\in\varnothing\)
\(2\left(x^2+y^2\right)=\left(x+y\right)^2\\ \Leftrightarrow2x^2+2y^2=x^2+2xy+y^2\\ \Leftrightarrow x^2-2xy+y^2=0\\ \Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x-y=0\Leftrightarrow x=y\)
\(x+y+4=0\Rightarrow\left\{{}\begin{matrix}y=-4-x\\x+y=-4\end{matrix}\right.\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=\left(-4\right)^3-3xy.\left(-4\right)=12xy-64\)
\(\Rightarrow P=2\left(12xy-64\right)+3\left(x^2+y^2\right)+10x\)
\(=24xy+3x^2+3y^2+10x-128\)
\(=24x\left(-4-x\right)+3x^2+3\left(-4-x\right)^2+10x-128\)
\(=-18x^2-62x-80=-18\left(x+\dfrac{31}{18}\right)^2-\dfrac{479}{18}\le-\dfrac{479}{18}\)
\(P_{max}=-\dfrac{479}{18}\) khi \(\left(x;y\right)=\left(-\dfrac{31}{18};-\dfrac{41}{18}\right)\)
\(x^2-4x+y^2-6y+15=2\)
\(\Rightarrow x^2-4x+4+y^2-6y+9+2=2\)
\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2=0\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
x^2-4x+y^2-6y+15=0
x^2-4x+4+y^2-6y+9+2=2
(x-2)^2+(y-3)^2=0
do x-2)^2>=o, (y-3)^2>= 0( ghi chú : >= là lớn hơn hoặc bằng)
vậy x-2=0 và y-3=0
x=2 và y=3
vậy x=2 và y=3 là nghiệm phương trình