K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 1 2021

\(P=x^4+2x^2+1-x^2=\left(x^2+1\right)^2-x^2\)

\(P=\left(x^2-x+1\right)\left(x^2+x+1\right)\)

\(\Rightarrow\) P luôn có ít nhất 2 ước số là \(x^2-x+1\) và \(x^2+x+1\)

Do \(x^2+x+1\ge x^2-x+1\) nên P là SNT khi và chỉ khi \(x^2-x+1=1\) đồng thời \(x^2+x+1\) là SNT

\(x^2-x+1=1\Leftrightarrow x^2-x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

- Với \(x=0\Rightarrow x^2+x+1=1\) ko phải SNT (loại)

- Với \(x=1\Rightarrow x^2+x+1=3\) là SNT (t/m)

Vậy \(x=1\)

12 tháng 10 2021

cc

NV
13 tháng 1 2021

\(M=a^4+a^3+a^2-a^3-a^2-a-5a^2-5a-5\)

\(M=a^2\left(a^2+a+1\right)-a\left(a^2+a+1\right)-5\left(a^2+a+1\right)\)

\(M=\left(a^2+a+1\right)\left(a^2-a-5\right)\)

M là số nguyên tố khi và chỉ khi \(a^2+a+1\) là SNT và \(a^2-a-5=1\)

\(\Rightarrow a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-2\left(loại\right)\end{matrix}\right.\)

Thay \(a=3\) vào ta được \(a^2+a+1=13\) là SNT (thỏa mãn)

Vậy \(a=3\)

23 tháng 8 2020

\(B=\left(n+3\right)^2-\left(n-4\right)^2\)

\(=\left(n+3-n+4\right)\left(n+3+n-4\right)\)

\(=7\left(2n-1\right)\)

Dễ thấy B là số nguyên tố khi

\(2n-1=1\Leftrightarrow n=1\)

Vậy n = 1 thì B là số nguyên tố

NV
10 tháng 8 2021

Đặt \(N=12n^2-5n-25=\left(3n-5\right)\left(4n+5\right)\)

Do n tự nhiên nên \(\left(4n+5\right)-\left(3n-5\right)=n+10>0\Rightarrow4n+5>3n-5\)

N luôn có ít nhất 2 ước số phân biệt là \(3n-5\) và \(4n+5\)

\(\Rightarrow\) N nguyên tố khi và chỉ khi: \(\left\{{}\begin{matrix}3n-5=1\\4n+5\text{ là số nguyên tố}\end{matrix}\right.\)

\(3n-5=1\Rightarrow n=2\)

Khi đó \(4n+5=13\) là số nguyên tố (thỏa mãn)

Vậy \(n=2\)

22 tháng 8 2021

Cảm ơn thầy ạ.

 

9 tháng 3 2018

GIÚP MÌNH VỚI Ạ ! MAI MÌNH CẦN GẤP RỒI!

10 tháng 3 2018

Bạn k mik đi xong mình làm

3 tháng 5 2020

ai do tra loi di ma