Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\text{Δ}=\left(-1\right)^2-4\cdot1\cdot\left(-m+1\right)\)
=1+4m-4
=4m-3
Để phương trình có nghiệm kép thì 4m-3=0
hay m=3/4
Thay m=3/4 vào pt, ta được: \(x^2-x+\dfrac{1}{4}=0\)
hay x=1/2
2: Để phương trình có hai nghiệm thì 4m-3>=0
hay m>=3/4
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2x_1+x_2=5\\x_1+x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=4\\x_2=-3\end{matrix}\right.\)
Theo đề, ta có: \(x_1x_2=-m+1\)
=>1-m=-12
hay m=13
a: Thay x=-1 vào (6), ta được:
1+2m+m+6=0
=>3m+7=0
=>m=-7/3
x1+x2=-2m/1=-2*7/3=-14/3
=>x2=-14/3-x1=-14/3+1=-11/3
b: \(\text{Δ}=0^2-2\left(2m+m+6\right)=-2\left(3m+6\right)\)
Để phương trình có nghiệm kép thì 3m+6=0
=>m=-2
Khi m=-2 thì (6) sẽ là x^2+2*(-2)-2+6=0
=>x^2-4x+4=0
=>x=2
ụa bạn ơi, trên câu a á m= -7/3 vậy sao xuống dưới thành 7/3 rồi
a,để pt có nghiệm kép
\(\Delta=m^2-\left(m^2-m+1\right)=m-1=0\Leftrightarrow m=1\)
\(x_1=x_2=\dfrac{2m}{2}=m=1\)
b, để pt có nghiệm \(m\ge1\)
c, Ta có \(\left(x_1+x_2\right)^2-4x_1x_2=6\)
Thay vào ta đc \(4m^2-4\left(m^2-m+1\right)=6\)
\(\Leftrightarrow4m=10\Leftrightarrow m=\dfrac{5}{2}\left(tm\right)\)
A, ta có: \(\Delta’\)=m2-1
Vậy trình có 2 nghiệm phân biệt <=> m2-1>0 => m>1
B,Phương trình có nghiệm kép khi: m2-1=0 => m=+- 1
Nghiem kép đó là: 0
\(x^2+2\left(m+1\right)x+2m+2=0\)
\(\Delta'=\left(m+1\right)^2-\left(2m+2\right)=m^2-1\)
a, Để phương trình có hai nghiệm phân biệt thì:
\(\Delta'>0\)
\(\Leftrightarrow m^2>1\)
\(\Leftrightarrow m^2-1>0\)
\(\Leftrightarrow m< -1;m>1\)
b, Phương trinh có nghiệm kép khi:
\(\Delta'\ge0\)
\(\Leftrightarrow m^2-1\ge0\)
\(\Leftrightarrow m\le-1;m\ge1\)
Theo Viet ta có:
\(x_1+x_2=-2\left(m+1\right)\)
\(x_1x_2=2\left(m+1\right)\)
\(x_1^2+x_2^2=8\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)
\(\Leftrightarrow4m^2+4m-8=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=1\\m=-2\end{cases}}\)
So với điều kiện phương trình có nghiệm m=1 ; m =-2
c) Ta có: \(\text{Δ}=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(2m+1\right)\)
\(=\left(-2m-2\right)^2-4\left(2m+1\right)\)
\(=4m^2+8m+4-8m-4\)
\(=4m^2\ge0\forall m\)
Do đó, phương trình luôn có nghiệm
Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{1}=2m+2\\x_1\cdot x_2=2m+1\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1-2x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2m-1\\x_1=2m+2+x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m-1}{3}\\x_1=2m+3+\dfrac{2m-1}{3}=\dfrac{8m+8}{3}\end{matrix}\right.\)
Ta có: \(x_1\cdot x_2=2m+1\)
\(\Leftrightarrow\dfrac{2m-1}{3}\cdot\dfrac{8m+8}{3}=2m+1\)
\(\Leftrightarrow\left(2m-1\right)\left(8m+8\right)=9\left(2m+1\right)\)
\(\Leftrightarrow16m^2+16m-8m-8-18m-9=0\)
\(\Leftrightarrow16m^2-10m-17=0\)
\(\text{Δ}=\left(-10\right)^2-4\cdot16\cdot\left(-17\right)=1188\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{10-6\sqrt{33}}{32}\\m_2=\dfrac{10+6\sqrt{33}}{32}\end{matrix}\right.\)
\(\Delta=\left(2m+1\right)^2-4\left(m^2-1\right)=4m+1+4=4m+5\)
Để pt có 2 nghiệm pb m > -5/4
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2m-1\left(1\right)\\x_1x_2=m^2-1\left(2\right)\end{matrix}\right.\)
\(\left(x_1+x_2\right)^2-4x_1x_2=x_1-5x_2\)
\(\Leftrightarrow4m^2+4m+1-4m^2+4=x_1-5x_2\)
\(\Leftrightarrow x_1-5x_2=4m+5\)(3)
Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}x_1+x_2=-2m-1\\x_1-5x_2=4m+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x_2=-6m-6\\x_1=-2m-1-x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=-m-1\\x_1=-2m-1+m+1=-m\end{matrix}\right.\)
Thay vào (2) ta được \(-m\left(-m-1\right)=m^2-1\)
\(\Leftrightarrow m^2+m=m^2-1\Leftrightarrow m=-1\)(tmđk)
b, Để phương trình có 2 nghiệm \(\Delta\ge0\)
hay \(\left(2m+8\right)^2-4.m^2=4m^2+32m+64-4m^2=32m+64\ge0\)
\(\Leftrightarrow32m\ge64\Leftrightarrow m\ge2\)
Theo Vi et ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+8\\x_1x_2=\dfrac{c}{a}=m^2\end{matrix}\right.\)
mà \(\left(x_1+x_2\right)^2=4m^2+32m+64\Rightarrow x_1^2+x_2^2=4m^2+32m+64-2x_1x_2\)
\(=4m^2+32m+64-2m^2=2m^2+32m+64\)
Lại có : \(x_1^2+x_2^2=-2\)hay \(2m^2+32m+66=0\Leftrightarrow m=-8+\sqrt{31}\left(ktm\right);m=-8-\sqrt{31}\left(ktm\right)\)
a) Thay m=8 vào phương trình, ta được:
\(x^2-2\cdot\left(8+4\right)x+8^2=0\)
\(\Leftrightarrow x^2-24x+64=0\)
\(\text{Δ}=\left(-24\right)^2-4\cdot1\cdot64=576-256=320\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{24+8\sqrt{5}}{2}=12+4\sqrt{5}\\x_2=\dfrac{24-8\sqrt{5}}{2}=12-4\sqrt{5}\end{matrix}\right.\)
Vậy: Khi m=8 thì phương trình có hai nghiệm phân biệt là \(x_1=12+4\sqrt{5};x_2=12-4\sqrt{5}\)
phương trình có
\(\Delta^'=\left(m+3\right)^2-m^2-3=m^2+6m+9-m^2-3\)
\(=6m+6\)
\(\Leftrightarrow4\left(m+3\right)^2-4\left(m^2+3\right)=4\Leftrightarrow m^2+6m+9-m^2-3=1\)\(\Leftrightarrow6m=-5\Leftrightarrow m=-\frac{5}{6}\left(tmdk\right)\)