Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x+y}{2014}\)=\(\frac{x-y}{2016}\)
=>\(2016x+2016y=2014x-2014y\)
=> \(2x=-4030y\)
=>\(x=-2015y\)
\(Thay\)\(x=-2015\)vào \(\frac{x+y}{2014}=\frac{xy}{2015}\)ta được
\(\frac{-2015+y}{2014}=\frac{-2015y}{2015}\)
\(\frac{-2014y}{2014}=\frac{-2015y^2}{2015}\)
\(-y=-y^2\)
=>\(y-y^2=0\)
\(y\).(\(1-y\))\(=0\)
\(=>\orbr{\begin{cases}y=0\\1-y=0\end{cases}}=>\orbr{\begin{cases}y=0\\y=1\end{cases}}\)
TH1 :\(y=0=>x.y=-2015.0=0\)
TH2 :\(y=1=>x.y=-2015.1=-2015\)
Ta có:\(\left|x-2013\right|+\left|x-2014\right|+\left|y-2015\right|+\left|x-2016\right|\)
\(=\left|x-2013\right|+\left|2016-x\right|+\left|x-2014\right|+\left|y-2015\right|\)
\(\ge\left|x-2013+2016-x\right|+\left|x-2014\right|+\left|y-2015\right|\)
\(=3+\left|x-2014\right|+\left|y-2015\right|\)
\(\ge3+0+0=3\)
Mà \(\left|x-2013\right|+\left|x-2014\right|+\left|y-2015\right|+\left|x-2016\right|=3\)
\(\Rightarrow\) Dấu "=" xảy ra khi và chỉ khi:
\(\hept{\begin{cases}\left(x-2013\right)\left(2016-x\right)\ge0\\\left|x-2014\right|=0\\\left|y-2015\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2013\le x\le2016\left(1\right)\\x=2014\left(2\right)\\y=2015\end{cases}}\)
Dễ thấy \(\left(2\right)\) thỏa mãn \(\left(1\right)\) nên \(x=2014;y=2015\)
Ta có :
\(\frac{x+y}{2014}=\frac{xy}{2015}=\frac{x-y}{2016}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x+y}{2014}=\frac{x-y}{2016}=\frac{x+y+x-y}{2014+2016}=\frac{x+x}{4030}=\frac{2x}{4030}=\frac{x}{2015}\)
Lại có :
\(\frac{xy}{2015}=\frac{x}{2015}\)
\(\Leftrightarrow\)\(xy=x\)
\(\Leftrightarrow\)\(y=1\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x+y}{2014}=\frac{x-y}{2016}=\frac{x+y-x+y}{2014-2016}=\frac{y+y}{-2}=\frac{2y}{-2}=\frac{y}{-1}=\frac{1}{-1}=-1\)
Do đó :
\(\frac{x}{2015}=-1\)
\(\Rightarrow\)\(x=-2015\)
Vậy \(x=-2015\) và \(y=1\)
Chúc bạn học tốt ~
a)
Ta có: \(\frac{x+y}{2014}\ne\frac{x-y}{2016}\)
\(\Leftrightarrow2016x+2016y=2014x-2014y\)
\(\Leftrightarrow2x=-4030y\)
\(\Leftrightarrow x=-2015y\)
Thay \(x=-2015y\)vào \(\frac{x+y}{2014}=\frac{xy}{2015}\)ta được:
\(\Leftrightarrow\frac{-2015+y}{2014}=\frac{-2015y}{2015}\)
\(\Leftrightarrow\frac{-2014y}{2014}=\frac{-2015y^2}{2015}\)
\(\Leftrightarrow-y=-y^2\)
\(\Leftrightarrow y-y^2=0\)
\(\Leftrightarrow y\left(1-y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y=0\\1-y=0\end{cases}}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}\)
Trường hợp \(y=0\):
\(y=0\Rightarrow x.y=-2015.0=0\)
Trường hợp \(y=1\):
\(y=1\Rightarrow x.y=-2015.1=-2015\)