K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2016

Ta có: \(\frac{x+y}{2014}\)=\(\frac{x-y}{2016}\)

=>\(2016x+2016y=2014x-2014y\)

=> \(2x=-4030y\)

=>\(x=-2015y\)

\(Thay\)\(x=-2015\)vào \(\frac{x+y}{2014}=\frac{xy}{2015}\)ta được

\(\frac{-2015+y}{2014}=\frac{-2015y}{2015}\)

\(\frac{-2014y}{2014}=\frac{-2015y^2}{2015}\)

\(-y=-y^2\)

=>\(y-y^2=0\)

   \(y\).(\(1-y\))\(=0\)

\(=>\orbr{\begin{cases}y=0\\1-y=0\end{cases}}=>\orbr{\begin{cases}y=0\\y=1\end{cases}}\)

TH1 :\(y=0=>x.y=-2015.0=0\)

TH2 :\(y=1=>x.y=-2015.1=-2015\)

4 tháng 12 2017

x=0 y=0

x=-2015 y=1

6 tháng 2 2019

Ta có:\(\left|x-2013\right|+\left|x-2014\right|+\left|y-2015\right|+\left|x-2016\right|\)

\(=\left|x-2013\right|+\left|2016-x\right|+\left|x-2014\right|+\left|y-2015\right|\)

\(\ge\left|x-2013+2016-x\right|+\left|x-2014\right|+\left|y-2015\right|\)

\(=3+\left|x-2014\right|+\left|y-2015\right|\)

\(\ge3+0+0=3\)

Mà \(\left|x-2013\right|+\left|x-2014\right|+\left|y-2015\right|+\left|x-2016\right|=3\)

\(\Rightarrow\) Dấu "=" xảy ra khi và chỉ khi:

\(\hept{\begin{cases}\left(x-2013\right)\left(2016-x\right)\ge0\\\left|x-2014\right|=0\\\left|y-2015\right|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2013\le x\le2016\left(1\right)\\x=2014\left(2\right)\\y=2015\end{cases}}\)

Dễ thấy \(\left(2\right)\) thỏa mãn \(\left(1\right)\) nên \(x=2014;y=2015\)

31 tháng 3 2018

Ta có : 

\(\frac{x+y}{2014}=\frac{xy}{2015}=\frac{x-y}{2016}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x+y}{2014}=\frac{x-y}{2016}=\frac{x+y+x-y}{2014+2016}=\frac{x+x}{4030}=\frac{2x}{4030}=\frac{x}{2015}\)

Lại có : 

\(\frac{xy}{2015}=\frac{x}{2015}\)

\(\Leftrightarrow\)\(xy=x\)

\(\Leftrightarrow\)\(y=1\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x+y}{2014}=\frac{x-y}{2016}=\frac{x+y-x+y}{2014-2016}=\frac{y+y}{-2}=\frac{2y}{-2}=\frac{y}{-1}=\frac{1}{-1}=-1\)

Do đó : 

\(\frac{x}{2015}=-1\)

\(\Rightarrow\)\(x=-2015\)

Vậy \(x=-2015\) và \(y=1\)

Chúc bạn học tốt ~ 

20 tháng 10 2018

a) 

Ta có: \(\frac{x+y}{2014}\ne\frac{x-y}{2016}\)

\(\Leftrightarrow2016x+2016y=2014x-2014y\)

\(\Leftrightarrow2x=-4030y\)

\(\Leftrightarrow x=-2015y\)

Thay \(x=-2015y\)vào \(\frac{x+y}{2014}=\frac{xy}{2015}\)ta được:

\(\Leftrightarrow\frac{-2015+y}{2014}=\frac{-2015y}{2015}\)

\(\Leftrightarrow\frac{-2014y}{2014}=\frac{-2015y^2}{2015}\)

\(\Leftrightarrow-y=-y^2\)

\(\Leftrightarrow y-y^2=0\)

\(\Leftrightarrow y\left(1-y\right)=0\)

\(\Rightarrow\orbr{\begin{cases}y=0\\1-y=0\end{cases}}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}\)

Trường hợp \(y=0\):

\(y=0\Rightarrow x.y=-2015.0=0\)

Trường hợp \(y=1\):

\(y=1\Rightarrow x.y=-2015.1=-2015\)