Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)
\(\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> 5x = 100 => x = 20
y = 12
2z = 84 => z = 42
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
suy ra \(\frac{5x}{50}=2\Rightarrow5x=100\Rightarrow x=20\)
\(\frac{y}{6}=2\Rightarrow y=12\)
\(\frac{2x}{42}=2\Rightarrow2x=84\Rightarrow x=42\)
a) ) Ta có:\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
Suy ra: \(\frac{5x}{50}=2\Rightarrow5x=100\Rightarrow x=20\)
\(\frac{y}{6}=2\Rightarrow y=12\)
\(\frac{2z}{42}=2\Rightarrow2z=84\Rightarrow z=42\)
b) 3x=2y, 7y=5z \(\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{21}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
Suy ra: \(\frac{x}{10}=2\Rightarrow x=20\)
\(\frac{y}{15}=2\Rightarrow y=30\)
\(\frac{z}{21}=2\Rightarrow z=42\)
c) \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{12}=\frac{z}{20}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\Rightarrow\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\Rightarrow\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
Suy ra: \(\frac{2x}{18}=3\Rightarrow2x=54\Rightarrow x=27\)
\(\frac{3y}{36}=3\Rightarrow3y=108\Rightarrow y=36\)
\(\frac{z}{20}=3\Rightarrow z=60\)
Ta có
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
áp dụng tính chất DTSBN ta có
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(+>\frac{x}{10}=2=>x=20\)
\(+>\frac{y}{6}=2=>y=12\)
\(+>\frac{z}{21}=2=>z=42\)
ti ck nha
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{5.10+6-2.21}=\frac{28}{14}=2\)
suy ra:
\(\frac{x}{10}=2\Rightarrow x=2.10=20\)
\(\frac{y}{6}=2\Rightarrow x=2.6=12\)
\(\frac{z}{21}=2\Rightarrow z=2.21=42\)
áp dụng tc dãy tỉ số bằng nhau ta có
x/10=y/6=z/21
=5x/10.5+y/6-z/21.2
=5x+y-z/14
=28/14
=2
=>x/10=2=>x=20
=>y/6=2=>y=12
=>z/21=2=>z=42
vay x=20,y=12,z=42
Ta co : \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) va 5x + y - 2z = 28
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\) va 5x + y -2z
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
Suy ra : \(\frac{5x}{50}=2\Rightarrow x=2.50:5=20\)
\(\frac{y}{6}=2\Rightarrow y=2.6=12\)
\(\frac{2z}{42}=2\Rightarrow z=2.42:2=42\)
Vậy : \(x=20;y=12;z=42\)
áp dụng tính chất cả dãy tỉ số bằng nhau ta có;
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{5.10+6-2.21}=\frac{28}{14}=2\)
suy ra:
\(\frac{x}{10}=2\Rightarrow x=2.10=20\)
\(\frac{y}{6}=2\Rightarrow y=2.6=12\)
\(\frac{z}{21}=2\Rightarrow z=2.21=42\)
ta có
\(\frac{x}{10}=\frac{5x}{10.5}=\frac{5x}{50}\)
\(\frac{y}{6}=\frac{y}{6}\)
\(\frac{z}{21}=\frac{2z}{21.2}=\frac{2z}{42}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
*\(\frac{x}{10}=2\Rightarrow x=2.10=20\)
*\(\frac{y}{6}=2\Rightarrow y=2.6=12\)
*\(\frac{z}{21}=2\Rightarrow z=2.21=42\)
vậy x=20;y=12;z=42
a) Giải:
Ta có: \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)
\(\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{-28}{14}=-2\)
+) \(\frac{5x}{50}=-2\Rightarrow x=-20\)
+) \(\frac{y}{6}=-2\Rightarrow y=-12\)
+) \(\frac{2z}{42}=-2\Rightarrow z=-42\)
Vậy x = -20, y = -12, z = -42
b) Giải:
Ta có: \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y-z}{10+15-21}=\frac{32}{4}=8\)
+) \(\frac{x}{10}=8\Rightarrow x=80\)
+) \(\frac{y}{15}=8\Rightarrow y=120\)
+) \(\frac{z}{21}=8\Rightarrow z=168\)
Vậy x = 80, y = 120, z = 168
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)
\(\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
Áp dụng tính chất cảu dãy tỉ số bằng nhau ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=-\frac{28}{14}=-2\)
\(\Rightarrow\begin{cases}\frac{x}{10}=-2\rightarrow x=\left(-2\right)\cdot10=-20\\\frac{y}{6}=-2\rightarrow y=\left(-2\right)\cdot6=-12\\\frac{z}{21}=-2\rightarrow z=\left(-2\right)\cdot21=-42\end{cases}\)
b) \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y-z}{10+15-21}=\frac{32}{4}=8\)
\(\Rightarrow\begin{cases}\frac{x}{10}=8\rightarrow x=8\cdot10=80\\\frac{y}{15}=8\rightarrow y=8\cdot15=120\\\frac{z}{21}=8\rightarrow z=8\cdot21=168\end{cases}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{10.5+6-2.21}=\frac{28}{14}=2\)
Vậy x=20,y=12,z=42
mk nhé bạn ^...^ ^_^
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=>\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> 5x=50.2=100, y=6.2=12, 2z=42.2=84
=> x=20, y=12, z= 42