Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(x^3+4x^2+4x=0\Leftrightarrow x\left(x^2+4x+4\right)=0\)
\(\Leftrightarrow x\left(x+2\right)^2=0\Leftrightarrow x=-2;x=0\)
2, \(\left(x+3\right)^2-4=0\Leftrightarrow\left(x+3-2\right)\left(x+3+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=1\)
3, \(x^4-9x^2=0\Leftrightarrow x^2\left(x^2-9\right)=0\)
\(\Leftrightarrow x^2\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=0;\pm3\)
4, \(x^2-6x+9=81\Leftrightarrow\left(x-3\right)^2=9^2\)
\(\Leftrightarrow\left(x-3-9\right)\left(x-3+9\right)=0\Leftrightarrow\left(x-12\right)\left(x+6\right)=0\Leftrightarrow x=-6;x=12\)
5, em xem lại đề nhé
à lag tý @@
5, \(x^3+6x^2+9x-4x=0\Leftrightarrow x^3+6x^2+5x=0\)
\(\Leftrightarrow x\left(x^2+6x+5\right)=0\Leftrightarrow x\left(x^2+x+5x+5\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=-1;x=0\)
1. \(x^6-2x^3+1=0\Leftrightarrow\left(x^3-1\right)^2=0\Leftrightarrow x=1\)
2. \(x^6+\dfrac{1}{4}x^3+\dfrac{1}{64}=0\Leftrightarrow\left(x^3\right)^2+2.x^3.\dfrac{1}{8}+\left(\dfrac{1}{8}\right)^2=0\Leftrightarrow\left(x+\dfrac{1}{8}\right)^2=0\Leftrightarrow x=-\dfrac{1}{2}\)4. \(x^3-10x^2+25x=0\Leftrightarrow x^3-5x^2-5x^2+25x=0\)
\(\Leftrightarrow x^2\left(x-5\right)-5x\left(x-5\right)=0\)
\(\Leftrightarrow x\left(x-5\right)^2=0\Leftrightarrow x=5\)
5. \(\dfrac{1}{4}x^3-3x^2+9x=0\)
\(\Leftrightarrow x\left(\dfrac{1}{4}x^2-3x+9\right)=0\)
\(\Leftrightarrow x\left[\left(\dfrac{1}{2}x\right)^2-2.\dfrac{1}{2}x.3+3^2\right]=0\)
\(\Leftrightarrow x\left(\dfrac{1}{2}x-3\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
6. \(x^5-16x=0\Leftrightarrow x\left(x^4-16\right)=0\Leftrightarrow x\left(x^2-4\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\\x^2=-4\left(l\right)\end{matrix}\right.\)
7. \(4x^2+4x-3=0\Leftrightarrow4x^2-2x^2-6x-3=0\)
\(\Leftrightarrow2x\left(2x-1\right)-3\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
8. \(4x^2+28x+48=0\Leftrightarrow4x^2+12x+14x+48=0\)
\(\Leftrightarrow4x\left(x+3\right)+12\left(x+4\right)=0\)
\(\Leftrightarrow\left(4x+12\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-4\end{matrix}\right.\)
9. \(9x^2-12x+3=0\Leftrightarrow9x^2-9x-3x+3=0\Leftrightarrow9x\left(x-1\right)-3\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(9x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)
f) = x2( x - 4 ) - 9( x - 4 ) = ( x - 4 )( x - 3 )( x + 3 )
g) = 4( x - y ) + ( x - y )2 = ( x - y )( x - y + 4 )
h) = x3( x + 1 ) + ( x - 1 )( x + 1 ) = ( x + 1 )( x3 + x - 1 )
i) = ( x - y )( x + y ) - 4( x + y ) = ( x + y )( x - y - 4 )
j) = ( x - y )( x2 + xy + y2 ) - 3( x - y ) = ( x - y )( x2 + xy + y2 - 3 )
Trả lời:
f, x3 - 4x2 - 9x + 36 = ( x3 - 4x2 ) - ( 9x - 36 ) = x2 ( x - 4 ) - 9 ( x - 4 ) = ( x - 4 )( x2 - 9 ) = ( x - 4 )( x - 3 )( x + 3 )
g, 4x - 4y + x2 - 2xy + y2 = ( 4x - 4y ) + ( x2 - 2xy + y2 ) = 4 ( x - y ) + ( x - y )2 = ( x - y ) ( 4 + x - y )
h, x4 + x3 + x2 - 1 = ( x4 + x3 ) + ( x2 - 1 ) = x3 ( x + 1 ) + ( x - 1 )( x + 1 ) = ( x + 1 )( x3 + x - 1 )
i, x2 - y2 - 4x - 4y = ( x2 - y2 ) - ( 4x + 4y ) = ( x - y )( x + y ) - 4 ( x + y ) = ( x + y )( x - y - 4 )
j, x3 - y3 - 3x + 3y = ( x3 - y3 ) - ( 3x - 3y ) = ( x - y )( x2 + xy + y2 ) - 3 ( x - y ) = ( x - y )( x2 + xy + y2 - 3 )
a, \(5x\left(x-1\right)+\left(x+17\right)=0\)
\(\Leftrightarrow5x^2-5x+x+17=0\Leftrightarrow5x^2-4x+17=0\)
\(\Leftrightarrow5\left(x^2-\frac{4}{5}x\right)+17=0\Leftrightarrow5\left(x^2-2.\frac{2}{5}x+\frac{4}{25}-\frac{4}{25}\right)+17=0\)
\(\Leftrightarrow5\left(x-\frac{2}{5}\right)^2-\frac{4}{5}+17=0\Leftrightarrow5\left(x-\frac{2}{5}\right)^2+81\ge81>0\)
Vậy pt vô nghiệm
b, \(3x\left(x-3\right)^2-3x\left(x+3\right)^2=0\)
\(\Leftrightarrow3x\left[\left(x-3\right)^2-\left(x+3\right)^2\right]=0\)
\(\Leftrightarrow3x\left(x-3-x-3\right)\left(x-3+x+3\right)=0\Leftrightarrow x.2x=0\Leftrightarrow x=0\)
c, \(2x^2-9x+7=0\Leftrightarrow2x^2-7x-2x+7=0\)
\(\Leftrightarrow x\left(2x-7\right)-\left(2x-7\right)=0\Leftrightarrow\left(x-1\right)\left(2x-7\right)=0\Leftrightarrow x=1;x=\frac{7}{2}\)
Trả lời:
a, \(5x\left(x-1\right)+\left(x+17\right)=0\)
\(\Leftrightarrow5x^2-5x+x+17=0\)
\(\Leftrightarrow5x^2-4x+17=0\)
\(\Leftrightarrow5\left(x^2-\frac{4}{5}x+\frac{17}{5}\right)=0\)
\(\Leftrightarrow x^2-\frac{4}{5}x+\frac{17}{5}=0\)
\(\Leftrightarrow x^2-2.x.\frac{2}{5}+\frac{4}{25}+\frac{81}{25}=0\)
\(\Leftrightarrow\left(x-\frac{2}{5}\right)^2+\frac{81}{25}=0\)
Vì \(\left(x-\frac{2}{5}\right)^2+\frac{81}{25}\ge\frac{81}{25}>0\forall x\)
nên pt vô nghiệm
b, \(3x\left(x-3\right)^2-3x\left(x+3\right)^2=0\)
\(\Leftrightarrow3x\left[\left(x-3\right)^2-\left(x+3\right)^2\right]=0\)
\(\Leftrightarrow3x\left(x-3-x-3\right)\left(x-3+x+3\right)=0\)
\(\Leftrightarrow3x.\left(-9\right).2x=0\)
\(\Leftrightarrow-54x^2=0\)
\(\Leftrightarrow x^2=0\)
\(\Leftrightarrow x=0\)
Vậy x = 0 là nghiệm của pt.
c, \(7-9x+2x^2=0\)
\(\Leftrightarrow2x^2-7x-2x+7=0\)
\(\Leftrightarrow x\left(2x-7\right)-\left(2x-7\right)=0\)
\(\Leftrightarrow\left(2x-7\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-7=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=1\end{cases}}}\)
Vậy x = 7/2; x = 1 là nghiệm của pt.
d, trùng ý c
1) x3 - 4x2 - 8x + 8
Thử với x = -2 ta có : (-2)3 - 4.(-2)2 - 8.(-2) + 8 = 0
Vậy -2 là nghiệm của đa thức . Theo hệ quả của định lí Bézout thì đa thức trên chia hết cho x + 2
Thực hiện phép chia x3 - 4x2 - 8x + 8 cho x + 2 ta được x2 - 6x + 4
=> x3 - 4x2 - 8x + 8 = ( x + 2 )( x2 - 6x + 4 )
2) 3x2 + 13x - 10
= 3x2 + 15x - 2x - 10
= 3x( x + 5 ) - 2( x + 5 )
= ( x + 5 )( 3x - 2 )
3) x( 2x - 7 ) - 7 - 4x + 14 = 0
<=> 2x2 - 7x - 4x + 7 = 0
<=> 2x2 - 11x + 7 = 0
<=> 2( x2 - 11/2x + 121/16 ) - 65/8 = 0
<=> 2( x - 11/4 )2 = 65/8
<=> ( x - 11/4 )2 = 65/16
<=> ( x - 11/4 )2 = \(\left(\pm\sqrt{\frac{65}{16}}\right)^2=\left(\pm\frac{\sqrt{65}}{4}\right)^2\)
<=> \(\orbr{\begin{cases}x-\frac{11}{4}=\frac{\sqrt{65}}{4}\\x-\frac{11}{4}=\frac{-\sqrt{65}}{4}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{11+\sqrt{65}}{4}\\x=\frac{11-\sqrt{65}}{4}\end{cases}}\)
4) 2x3 + 3x2 + 2x + 2 = 0 ( chịu không làm được ((: )
\(x^3-4x^2-9x+36=0\)
=> \(x^2\left(x-4\right)-9\left(x-4\right)=0\)
=> \(\left(x-4\right)\left(x^2-9\right)=0\)
=> \(\orbr{\begin{cases}x-4=0\\x^2-9=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=\pm3\end{cases}}\)
\(\left(x^2-9\right)^2-\left(x-3\right)^2=0\)
=> \(\left(x^2-9+x-3\right)\left[x^2-9-\left(x-3\right)\right]=0\)
=> \(\left(x^2+x-12\right)\left(x^2-9-x+3\right)=0\)
=> \(\left(x^2+x-12\right)\left(x^2-x-6\right)=0\)
=> \(\left(x^2-3x+4x-12\right)\left(x^2+2x-3x-6\right)=0\)
=> \(\left[x\left(x-3\right)+4\left(x-3\right)\right]\left[x\left(x+2\right)-3\left(x+2\right)\right]=0\)
=> \(\left(x-3\right)\left(x+4\right)\left(x-3\right)\left(x+2\right)=0\)
=> \(\left(x-3\right)^2\left(x+4\right)\left(x+2\right)=0\)
=> \(\hept{\begin{cases}\left(x-3\right)^2=0\\x+4=0\\x+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\x=-4\\x=-2\end{cases}}\)
\(x^3-3x+2=0\)
=> \(x^3-x-2x+2=0\)
=> \(x^2\left(x-1\right)-2\left(x-1\right)=0\)
=> \(\left(x-1\right)\left(x^2-2\right)=0\)
=> x = 1