Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(N=\dfrac{x^2-5x+5x+25+10x}{\left(x-5\right)\left(x+5\right)}\cdot\dfrac{x-5}{x}\)
\(=\dfrac{\left(x+5\right)^2}{x+5}\cdot\dfrac{1}{x}=\dfrac{x+5}{x}\)
b: N=3/2
=>x+5/x=3/2
=>2x+10=3x
=>-x=-10
=>x=10
c: N nguyên thì x+5 chia hêt cho x
=>5 chia hết cho x
=>\(x\in\left\{1;-1\right\}\)
a) ĐKXĐ: \(x\notin\left\{5;-5\right\}\)
b) Ta có: \(A=\dfrac{2x}{x^2-25}+\dfrac{5}{5-x}-\dfrac{1}{x+5}\)
\(=\dfrac{2x}{\left(x-5\right)\left(x+5\right)}-\dfrac{5}{x-5}-\dfrac{1}{x+5}\)
\(=\dfrac{2x}{\left(x-5\right)\left(x+5\right)}-\dfrac{5\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\dfrac{x-5}{\left(x+5\right)\left(x-5\right)}\)
\(=\dfrac{2x-5x-25-x+5}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{-4x-20}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{-4\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{-4}{x-5}\)
Để A nguyên thì \(-4⋮x-5\)
\(\Leftrightarrow x-5\inƯ\left(-4\right)\)
\(\Leftrightarrow x-5\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{6;4;7;3;9;1\right\}\)(nhận)
Vậy: Để A nguyên thì \(x\in\left\{6;4;7;3;9;1\right\}\)
\(a,A=\dfrac{9-3x+x^2+10x+25-x^2+1}{\left(x-1\right)\left(x+5\right)}\\ A=\dfrac{7x+35}{\left(x-1\right)\left(x+5\right)}=\dfrac{7\left(x+5\right)}{\left(x-1\right)\left(x+5\right)}=\dfrac{7}{x-1}\\ b,A\in Z\\ \Leftrightarrow x-1\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ \Leftrightarrow x\in\left\{-6;0;2;8\right\}\left(tm\right)\\ b,A< 0\Leftrightarrow x-1< 0\left(7>0\right)\\ \Leftrightarrow x< 1;x\ne-5\\ c,\left|A\right|=3\Leftrightarrow\dfrac{7}{\left|x-1\right|}=3\Leftrightarrow\left|x-1\right|=\dfrac{7}{3}\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}+1=\dfrac{10}{3}\left(tm\right)\\x=-\dfrac{7}{3}+1=-\dfrac{4}{3}\left(tm\right)\end{matrix}\right.\)
\(A=\dfrac{x^2+x-6}{x^2+6x+9}=\dfrac{\left(x-2\right)\left(x+3\right)}{\left(x+3\right)^2}=\dfrac{x-2}{x+3}=\dfrac{x+3-5}{x+3}=1-\dfrac{5}{x+3}\in Z\\ \Rightarrow x+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow x\in\left\{-8;-4;-2;2\right\}\)
\(A=\dfrac{x-5}{x-11}=1+\dfrac{6}{x-11}\)
Để `A` có giá trị nguyên thì \(\dfrac{6}{x-11} \in Z\)
\(=>x-11 \in Ư_{6}\)
Mà \(Ư_{6}=\){\(\pm 1 ;\pm 2;\pm 3;\pm 6\)}
\(=>x \in \){`10;12;9;13;8;14;5;17`}